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[1] Direct measurements of suspended sediment concentration (SSC) in rivers are
surprisingly sparse. We present an approach for measuring these concentrations from space,
tailored to fit rivers with limited records of flood-level SSC. Our approach requires
knowledge of a typical particle-size distribution of sediment suspended during floods, the
dominant mineralogy, and a calibration consisting of above-water reflectance field spectra
with known SSC. Surface SSC values were derived for two Landsat images covering 70 km
of the Feather and portions of the Sacramento, Yuba, and Bear Rivers in California in order
to capture conditions during a large flood event. Using optical theory and radiative transfer
modeling we modeled remote-sensing reflectance (Rrs) for a number of three-component
mixtures composed of color dissolved organic matter (CDOM), water, and montmorillonite
particles. We then iteratively estimated CDOM by fitting modeled spectra for a range of
absorption coefficients to field-measured spectra collected from the Sacramento River and
matched to measured SSC values. Spectral mixture analysis with a two-end-member model
yielded end-member fractions and SSC via a look-up table specific to the Landsat sensor.
Model closure was within the error of measured SSC values, suggesting that this approach
is promising for deriving SSC on rivers during flood conditions when empirical
relationships established between low SSC values and Rrs are no longer valid.
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1. Introduction
[2] Since the 1970s, remotely acquired optical imagery

has been used to quantify surface sediment concentrations
in sufficiently large water bodies [see reviews by Mertes
et al., 2004; Ritchie et al., 2003a]. Such methods show
promise for obtaining sediment concentrations and fluxes in
rivers lacking direct measurements of suspended load,
potentially providing valuable information on the role of
floods in transporting sediment. With the present suite of
satellites carrying optical instruments, image analysis could
be used to regularly monitor suspended sediment transport
conditions during large floods when high sediment concen-
trations and hazardous conditions otherwise inhibit sam-
pling. Furthermore, imagery provides a synoptic assessment
of the river system—a unique benefit that allows for both
the setting of initial conditions and/or validation of sus-
pended sediment transport predicted by multidimensional

numerical models [Dekker et al., 2001; Ouillon et al.,
2004].

[3] Regularly quantifying suspended sediment concen-
trations in large rivers with consistent methods would high-
light seasonal and interannual variations, and mapping the
spatial distribution of sediment loading could provide infor-
mation on sediment sources. Both temporal and spatial
trends are relevant for understanding large-scale biogeo-
chemical cycling—especially of carbon as river discharge
provides the primary pathway for carbon burial in oceans,
contributing an estimated 6 � 1012 kg of sediment to the
world’s oceans each year [Milliman and Meade, 1983].
Furthermore, suspended sediment delivery to floodplains
counteracts lateral erosion due to channel migration, con-
tributing to floodplain maintenance and intrabasin storage
of associated nutrients and contaminants.

[4] Although remote sensing is used widely to monitor
oceans and lakes, its application to river systems is ham-
pered by two crucial difficulties. First, image-derived meas-
urements represent the concentration of suspended sediment
within a surface layer—thus necessitating conversion to a
depth-integrated load before comparison to numerical mod-
els or field measurements. Second, most methods have
relied upon empirical relationships between sediment con-
centrations and the water-leaving reflectance captured by
the remote sensing instrument [Ritchie et al., 2003a; Ruhl
et al., 2001; Whitlock et al., 1981]. Empirical calibrations
using remotely sensed or field-derived reflectance data
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provide site-specific predictions of water quality parameters
with reasonable accuracy [e.g., Ritchie et al., 2003b; Ruhl
et al., 2001; Whitlock et al., 1981], but are limited in their
universal application and may not extend to the full range
of conditions present in inland waters [Schiebe et al., 1992].
Although several workers have identified a linear relation-
ship between suspended sediment concentration (SSC) and
reflectance within a concentration range of 0 to 50 mg L�1

[Munday and Alfoldi, 1979; Ritchie et al., 2003b], an expo-
nential relationship clearly exists at higher concentrations
[Curran and Novo, 1988; Holyer, 1978; Schiebe et al.,
1992]. Thus calibrations established during lower flows do
not apply to more turbid conditions because of the nonlinear
response of reflectance to increasing sediment levels
[Jonasz and Fournier, 2007; Pavelsky and Smith, 2009;
Ritchie et al., 2003a; Schiebe et al., 1992; Witte, 1982].
Consequently, establishing a physical basis for modeling
the water-leaving reflectance for a given concentration
could prove to more reliably assess SSC. Furthermore, this
would present a general approach which could be applied
across a range of rivers, a range of conditions, and over sev-
eral decades of imagery.

[5] In this paper we seek to establish a framework for a
universal approach for deriving SSC in rivers from remote
sensing imagery. We emphasize that our primary contribu-
tion is to synthesize the work of others into a unifying
framework, fundamentally based on physical theory, and
specific to turbid rivers. Because we hope that this frame-
work will be tested by others, we purposely designed this
study to rely upon the minimum amount of easily obtain-
able in situ data and model code. More specifically, we:

[6] 1. Present model coefficients describing the inherent
optical properties of a specific type (color, density) and size
distribution of inorganic and organic particles suspended in
water.

[7] 2. Generate end members (sets of water-leaving re-
flectance spectra) for each of several combinations of SSC
and other relevant water constituents impacting the remote-
sensing signal.

[8] 3. Invert the end members with field measurements
of the water-leaving spectral reflectance for a given SSC to
obtain reasonable values of the other water constituents.

[9] 4. Decompose the signal in two Landsat images
using a spectral mixture analysis approach with the site-
specific model end members to arrive at surface values of
SSC in mg L�1.

[10] A theoretical approach, which accounts for the de-
pendency of the form and magnitude of the water-leaving
spectra on sediment mineralogy and particle-size distribu-
tion, appears promising for meeting our objective of a physi-
cally based, universally applicable approach to inferring
high SSC in rivers.

2. Theoretical Background
2.1. Toward a Universal Sediment Concentration
Model for Remote Sensing

[11] Holyer [1978] addressed development of universal
sediment concentration algorithms and found that sufficient
conditions for universality existed if the particle-size distri-
bution of the sediment source can be accounted for. Other
water optical properties have been found to transfer across

a range of suspended sediment particle sizes, including
nephelometric turbidity units [Holyer, 1978], beam attenua-
tion [Gould and Arnone, 1997], and diffuse light attenua-
tion [Woodruff et al., 1999]. However, a relationship
between these parameters and SSC is then necessary, which
is subject to the same particle-size considerations.

[12] A more theoretical approach follows models devel-
oped by oceanographers, which simulate the volume reflec-
tance of the water column based upon quantitative
knowledge of the optical properties of the water and sedi-
ment. Optical modeling is preferable to the (semi-) empiri-
cal algorithms described above, as these models are able to
account for the range of water conditions present in turbid
(case 2) and extremely turbid (case 3) water bodies [Stumpf
and Pennock, 1989]. These models range from generic
radiative transfer models (e.g., hydrolight [Mobley, 1994])
to models which only address the suspended sediment com-
ponent of the water through semianalytical solutions [e.g.,
Albanakis, 1990; Woodruff et al., 1999].

[13] Recent approaches mainly use parameterized bio-op-
tical models that are subsequently inverted [Dekker et al.,
2001; Hoogenboom et al., 1998]. Inversion of the radiative
transfer model can be achieved through methods such as
iterative fitting with a minimization scheme, or artificial
neural networks [Durand et al., 2000]. Both methods
require that the domain of variability of the input parame-
ters—e.g., chlorophyll levels, SSC, colored dissolved or-
ganic matter absorption—is known a priori. Iterative fitting
approaches used by Frette et al. [1998], for example, rely
on �2 values between the modeled and measured spectral
radiances. This can become computationally expensive
when several spectral bands are used, however the use of
hyperspectral data mitigates the problem of multiple solu-
tions (i.e., multiple combinations of the model variable may
combine to give the same reflectance spectra). Neural net-
works can automate this process, although they also require
extensive a posteriori analysis [Durand et al., 2000].

2.2. Governing Theory Behind Optical and Radiative
Transfer Modeling

[14] The following discussion is intended to provide the
reader with a basic understanding of the processes by
which light interacts with water, water constituents, and the
atmosphere. We have drawn heavily upon work by Mobley
[1994], Kirk [1994], Bricaud and Morel [1986], and
Wozniak and Stramski [2004], and refer the interested
reader to these publications for further details.

[15] We begin by following the path of light collected by
a hand-held field radiometer. When placed just above the
surface of a water body, the radiometer captures upward
directed light that is a product of the scattering of incident
sunlight and skylight by suspended particles and water mol-
ecules, and absorption of the light by water and dissolved
substances [Kirk, 1994]. Together these two processes
describe the total attenuation of light by a specific layer of
the water body:

c ¼ aþ b; (1)

where a, b, and c are the absorption, scattering, and the
beam attenuation coefficients (m�1), respectively. Since
they are independent of the geometric structure of the light
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field, and only depend upon the substances dissolved or
suspended in the water, these coefficients are inherent opti-
cal properties (IOP) [Kirk, 1994]. The total amount of light
attenuation by the layer of the water body can then be
expressed as a sum of the absorption ai(�), scattering bi(�),
or backscattering coefficients bBi(�) attributed to each opti-
cally active component, indexed by i, of a mixture, with the
amount dependent on the optical cross section available for
photon interaction. Since mineral particles dominate the
emergent spectra in case 2 (turbid) water bodies, simulating
the volume reflectance measured by a field radiometer
involves determining the concentration, particle-size distri-
bution, and optical properties of these particles.

[16] Optical cross sections can be theoretically derived
by solving the set of equations governing electromagnetic
behavior for the case of a plane wave of light illuminating
a sphere. Generally attributed to Mie [1908], these equa-
tions offer an exact solution to the Maxwell equations for
isotropic, homogeneous spheres in a sufficiently dilute sus-
pension so that scattering is incoherent. Solving these equa-
tions yields dimensionless efficiency factors expressing the
amount of incident light absorbed, scattered, or backscat-
tered by the suspended minerals. These factors are then
normalized by the geometrical cross-sectional areas of the
particles to give their respective optical cross sections.
Once the optical properties are determined, a relationship
can be derived between these properties and the incident
light field in order to describe how radiance varies with dis-
tance along any specified path into, or exiting the water.

[17] At the top of the atmosphere, the total radiance
measured by a remote sensing instrument over a water
body can be conceptualized as the sum of four components
(modified from Legleiter et al. [2004]):

Ltð�Þ ¼ LBð�Þ þ Lwð�Þ þ Lsð�Þ þ Lpathð�Þ; (2)

where Lt(�) (W m�2 sr�1 nm�1) is the radiance at the top
of the atmosphere, LB(�) is the radiance that has transmit-
ted through the water column, reflected off the channel sub-
strate, and transmitted through the atmosphere before
reaching the sensor, Lw(�) is the water-leaving radiance
due to the water column alone, Ls(�) is the radiance of sun-
light reflected directly off the water surface without inter-
acting with the water column, and Lpath(�) refers to the
path radiance—e.g., scattering due to air molecules and
aerosol particles (dust, water droplets, salt, etc.) within the
atmosphere. If the data are screened for sun glint, and for
sufficiently deep and turbid water bodies where light is
scattered upward before reaching the bottom, Lw(�) can be
solved for by

Lwð�Þ ¼
Ltð�Þ � Lpathð�Þ

�
; (3)

where � is the atmospheric transmittance.
[18] Measuring the water-leaving radiance Lw directly

above the water surface is not possible since the signal col-
lected by the radiometer includes both Lw and skylight (Ls)
reflected off the water surface into the direction of the sen-
sor (Lr). Thus Lw must be determined indirectly in the field
by subtracting the reflected skylight component from the
total signal (Lt). In practice, the relationship between Ls

and Lr is estimated using a proportionality factor (�), which
depends upon the direction, wavelength, wave-surface
slope, detector field-of-view (FOV), and on the incident
sky radiance distribution. With a uniform sky radiance dis-
tribution, and a level water surface, this factor represents
the average of the Fresnel reflectance over the detector
FOV [Mobley, 1999].

[19] Finally, if the radiometer measurements are taken
above the water surface, we also need to account for trans-
mittance across the air/water boundary. Using the relation-
ship proposed by Mobley [1994], the emergent flux at the
water surface is

Lwð�0; �; �Þ ¼
t � Luð�; �; z ¼ 0; �Þ

n2
w

(4)

showing that Lw (W m�2 sr�1 nm�1) at a specific zenith �0,
azimuthal angle �, and wavelength � is related to the
upward-flux beneath the water surface Lu (�,� z ¼ 0,�) by a
factor (t/nw

2) which accounts for losses due to internal
reflection and refraction at the water/air boundary. For a
flat water surface, Austin [1980] proposed a transmittance
(t) of 0.979 across the interface, which along with the re-
fractive index for water at 20�C (nw ¼ 1.333) gives a value
of 0.551 for this factor.

[20] Relating the radiance values measured just above
the water surface to those acquired by a remote sensing
instrument then involves converting this radiance value to
units of reflectance specific to remote sensing, defined as

Rrsð�0; �; �Þ ¼
Lwð�0; �; �Þ

Edð�Þ
; (5)

where Ed(�) is the downwelling spectral irradiance (W m�2

nm�1) of sunlight incident upon the water surface.
[21] Equation (5) can be approximated at each wave-

length by

Rrs ¼
ðLt � �LsÞ
�

Rg
Lg

� � ;
(6)

where the denominator is Ed as it is commonly measured in
the field, by measuring the radiance (Lg) of a gray surface
(usually a plaque made of Spectralon) with a known irradi-
ance reflectance Rg, which is a Lambertian (isotropic)
reflector to a good approximation.

2.3. Spectral Mixture Analysis

[22] SMA determines the contribution by several compo-
nents to a signal. It relies on set end members of known,
pure components, independent of the image being ana-
lyzed. Each image pixel encodes information on the reflec-
tance properties of a mixture of materials present within
the projected ground area. Where the entire pixel is a water
mixture, a linear end-member model can be used to deter-
mine the relative contributions by each ‘‘pure’’ component
to the reflectance spectra for that pixel, via

rðx; yÞ ¼ 	M þ "; (7)

where r(x,y) is the reflectance spectrum for the pixel at
position (x,y) ; 	 is the vector of end-member abundances;
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M is the matrix of end-member spectra, and " is the vector
of residuals between the modeled and measured reflec-
tance. The result of the mixture analysis is a series of ‘‘frac-
tion images’’ in which the data values represent the fraction
contribution by each end member. For our purposes, an
‘‘end member’’ constitutes water with optically active con-
stituents present at varying levels of concentration.

3. Methods
3.1. Overview

[23] We outline our methodological strategy in Figure 1.
In practice we first obtained simultaneous samples of sur-
face SSC (mg L�1), Lt(�), and Ed(�) by boat on the Feather
River in Northern California (Figure 2). Using these meas-
urements and equation (6) we generated spectra for each
sediment concentration (Figure 1). We then solved optical
equations for sediment specific to that carried in suspension
by the Feather River. Using mass-specific absorption and
scattering coefficients for the suspended sediment, and for
pure water, and the atmospheric conditions during the field
campaign, we solved the radiative transfer equations to
derive Rrs(�

0,’,�) for several combinations of SSC and the
absorption by color dissolved organic matter. Because we
did not know the levels of other optically active constitu-
ents in the river water at the time, we inferred these levels
by inverting several modeled spectra with the field meas-
urements to select the ‘‘best-fit’’ end members for a given
level of color dissolved organic matter absorption. Linear
mixture analysis was then used twice. First we applied this

to the modeled end members in order to construct a calibra-
tion curve relating end-member fractions to SSC. This pro-
vided us with a set of end members which could then be
used to derive sediment concentrations from any remotely
derived image. We then applied this end-member set to two
Landsat images acquired during past floods on the Feather
River. After correcting for atmospheric interference and
converting to reflectance units, linear mixture analysis was
applied to both images using two end members to bracket
the expected range of SSC during each flood. The resulting
fraction values were then converted to SSC in mg L�1

using the calibration curve specific to Landsat.

3.2. Field Measurements

[24] The Feather River (Figure 2) drains the western Si-
erra Nevada Mountains and is enclosed by levees extending
about 70 km from impoundment at Oroville Dam to the
confluence with the Sacramento River. In February 2006 we
measured Rrs(�

0,’,�) and SSC at several locations along the
Sacramento and Feather Rivers (Figure 3). Satellite stage
heights were 13 m on the Sacramento (Wilkins Slough,
USGS 11390500) on 15 February and 10 m on the Feather
(near Boyd’s, USGS 390328121363901) on 16 February at
noon. Suspended sediment was measured using a Van Dorn
sampler suspended off a boat just below the water surface to
capture the volume penetrated by the sensor (�0.25 m, see
section 3.3.1). At two locations (SR1 and SR4) we also col-
lected a second, deeper sample at �2 m. Total suspended
sediment was then measured in the laboratory using stand-
ard vacuum filtration methods (ASTM D3977–97), and a

Figure 1. General modeling approach.
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Pall type A/E glass fiber filter with 1.0 mm nominal pore
size.

[25] Above-water radiance was measured using an Ana-
lytical Spectral Devices (ASD) FieldSpec Pro (Boulder,
Colo.), with a spectral range of 350–2500 nm. Total at-sen-
sor radiance Lt(�), sky radiance Ls(�), and panel radiance
Lg(�) were sampled using an 8� field-of-view foreoptic
attached to the instrument. Before each water measurement
we calibrated the ASD by referencing a diffuse, gray (nom-
inally 10% reflecting) Spectralon panel (Labsphere, NH).
All measurements were made at � ¼ 40� from nadir and at
an azimuth directed ’ ¼ 135� from the sun to minimize
sun glint and instrument shading, and no more or less than
2 h from noon. Sky radiance was sampled by pointing the
spectrometer directly toward the sky. At each site we
obtained five replicate spectra of the panel, water surface,
and sky radiance potentially reflected into the water-leav-
ing radiance measurements. After checking and averaging
each radiance measurement at a site, Ed(�) was determined
from the measured panel radiance from equation (6) using
the default proportionality factor (�, 0.028) for a wind
speed under 5 m s�1 (Table 1), and clear sky conditions
[Mobley, 1999]. Error introduced through variability in �
was minimized by sampling at low wind speeds, and in a

view direction that minimized sun glint and the effect of a
nonuniform radiance distribution (� ¼ 40�, ’ ¼ 135�) [see
Mobley, 1999; Toole et al., 2000]. Disruption of the water
surface state and the resulting impact on the water-to-
atmosphere transmission is more influenced by turbulence
than wind speed on shallow, gravel-bedded streams
[Legleiter et al., 2004]. However, the lower Feather and
Sacramento Rivers are both deep, sand-bedded rivers and
we did not observe standing waves, or turbulence eddies, or
wakes while sampling. Thus at these velocities and wind
speeds, for our deep, sand-bedded rivers we used a flat-
water value for �.

3.3. Optical Modeling

[26] Optical and radiative transfer modeling was then
used to extend the field spectra to sediment conditions
which existed during the two floods. Modeled spectra were
only fitted to the measured spectra from the Sacramento
River, as the panel measurements for the 16 February field
day (on the Feather River) were unusable. A more detailed
version of Figure 1 is given as Figure 4, and each step of
our approach represented here by a box for a quantity, and
a path for a process.

Figure 2. (a) True-color composite of the 14 January 1997 Landsat TM image. Also shown are USGS
gauges at Gridley (11407150) and Nicolaus (11425000) for the Feather, Marysville (11421000) for the
Yuba River, and Wheatland (11424000) for the Bear River. (b) Landsat image location.
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3.3.1. Mineral Optical Properties
[27] Mie equations require the spectral distribution of the

relative refractive index (M) of the particle suspended in
water (Figure 4, box a). Both the real (nr) and imaginary
(n0) components of M were approximated as a homogenous
population of clay minerals. Spectral values for compressed
smectite (montmorillonite) pellets from Amory, Mississippi

are given by Egan and Hilgeman [1979]. Note that these
measurements were made in reference to air. In order to
apply these values to water, they were multiplied by the ra-
tio of nrair to nrwater at STP and 538 nm [Bass et al., 1995],
resulting in a nr centered around 1.14. To test the sensitiv-
ity of the model to the refractive index, a low nr of 1.124,
and the nr and density of quartz (1.148, 2.63 � 106 g m�3)

Figure 3. Sampling (yellow) and core (white) locations on the Sacramento and Feather Rivers over a
13 February 2006 SPOT image. SPOT is used only for showing the sampling locations because of the
improved spatial resolution (10 m) over Landsat (30 m).
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[Wozniak and Stramski, 2004] were also used to calculate
the IOPs (Table 1, Figure 5).

[28] Few measurements exist in the visible spectrum of
the imaginary index (n0) for minerals relative to water. Here
we used three values of n0 in the Mie modeling—a constant
n0 of 10�3, and a ‘‘medium’’ n0 and ‘‘high’’ n0 based on Pat-
terson et al. [1977]. The medium value declines exponen-
tially from 0.002 at 300 nm to 0.001 at 600 nm, and the
high is the original data. For the modeled montmorillonite
particles the constant n0 of 10�3 appeared to be the most
suitable, based on the resulting spectral shape (Figure 5).

3.3.2. Particle Size Distribution
[29] Sediment sampled in suspension in February 2006

was insufficient for determining the particle-size distribution
because we are interested in this quantity during very large
flood events; the low SSC conditions that existed while we
were in the field would not translate to these high flows.
Instead, we used several subsections of two cores taken from
the floodplain of the Feather River as a proxy. Each core sub-
section was sieved to 250 mm and the remaining fines ana-
lyzed using a Micromeritics SediGraph III Particle Size
Analyzer (Norcross, Georgia). Of these, we selected the most
clay-rich sample (MSFR18 60–62 cm, 12.25%–71.56%–
16.19% sand-silt-clay) to represent the size distribution of
sediment suspended in the upper layer of river water. A parti-
cle density �s, of 2.65 g cm�3, settling in water with a density
of 0.9939 g cm�3 and viscosity of 0.7136 mPas was used for
all samples (Rolf Aalto, personal communication, 23 January
2008). Bins were defined logarithmetically from 1.09 to
325.5 mm. Since the SediGraph gives the mass size distribu-
tion, �s was used to convert to equivalent spherical volumes,
and from this a linear least-squares approximation to the
SediGraph data was derived (see Appendix A for the details
of how the mineral IOPs were determined), giving a slope
(j) of �2, and a scale parameter (K) of 1.55 � 1010 (Table 1,
Figure 4a). This satisfied the goodness-of-fit test of Gaudoin

et al. [2003] using correlation coefficients to test the hypothe-
sis that a log-log plot of the number distribution fits a power
law (n ¼ 69, r2 ¼ 0.999, 	 ¼ 0.01).

3.4. Hydrolight

[30] A numerical solution to the general radiative trans-
fer equation is implemented in the bio-optical model
Hydrolight [Mobley and Sundman, 2001]. This model has
been extensively tested, accurately reproducing in situ Rrs

measurements in turbid rivers, coastal waters, and lakes
[e.g., Bergmann et al., 2004; Brando and Dekker, 2003;
Green and Sosik, 2004]. A three-component model was
used, parameterized with the values listed in Table 1.

[31] In Hydrolight the inputs can be divided into those
which define the inherent optical properties of the water
body (Figures 4a–4c), and those which define the radiomet-
ric conditions (Figures 4d–4f). For the first, pure water,
color dissolved organic matter (CDOM), and mineral par-
ticles were included to form a three-component model.
Algae and other photosynthetic species were not observed
in the cold water of the Feather River. Each inherent optical
property can then be determined by summing the individual
contributions, i.e., for absorption:

að�Þ ¼ awð�Þ þ aCDOMð�Þ þ Ca�mð�Þ; (8)

where the first component aw(�) represents absorption by
(chemically) pure water [see Bukata et al., 1995], the sec-
ond aCDOM(�) by CDOM, and the third a�m(�) by mineral
particles. Scattering and backscattering are then similarly
expressed for water and mineral particles.

[32] Pure water coefficients were taken from the litera-
ture for absorption [Pope and Fry, 1997] and scattering
[Bukata et al., 1995, p. 119] with a Rayleigh-like scattering
phase function. Mineral coefficients were determined theo-
retically as described in section 3.3.1, and the mineral scat-
tering phase function was determined for each wavelength

Table 1. Parameters for Mie Calculations and Hydrolight

Parameter Value Description

Relative refractive index, M 1.14 nr(�) montmorillonitea

0.001 n0(�)a

Number-size distribution K ¼ 1010; j ¼ �2 Feather River core MSFR18 (60–62 cm)
Dmin, Dmax 0.05–30 mm
Mineral density, � 2.5 Mg m�3 montmorilloniteb

Solar geometry 50.79� solar zenith 19.42 h UTC, on 15 Feb 2006, at 38�N, 121�W
Atmospheric conditions

Sea level pressure 75.95 cm default
Air mass type 10 continental
Relative humidity 66% next three parameters from RADTRAN optimizing to field spectra
Precipitable water 1.2 cm
Horizontal visibility 30 km station at Sacramento Airport
24-h average wind speed 2.5 m s�1 Mobley [1999]
Lr/Ls 0.028

SSC, Cs 2–203 mg L�1

Pure water coefficients a turn 20�C Pope and Fry [1997]
aw(�), bB,w(�), 
w(�) absorption

Bukata et al. [1995]
scattering
Rayleigh-like phase function

CDOM, aCDOM(d,�) 2.5 m�1 400 nm Exponential decay with d, �c

a[Egan and Hilgeman, 1979]; note that these were made in air. To convert to a water reference these values were multiplied by nair/nwater for pure water
at STP and � ¼ 538 nm [Bass et al., 1995].

b[Eshel et al., 2004].
c[Mobley, 1994].
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from the theoretical backscattering to total scattering frac-
tion and a Fournier-Forand phase function with a tolerance
of 0.005 [see Mobley and Sundman, 2001].

[33] Consistent with the use of optical cross sections to
describe photon interactions with each component, the spe-
cific mineral coefficient (a�m) is expressed in units of area per
unit mass (m2 g�1). When multiplied by the suspended sedi-
ment concentration SSC (g m�3), this gives the attenuation
through a path length (m�1). Therefore specific coefficients
for the mineral particles were obtained by multiplying the

theoretical coefficients by the SSC at the water surface, esti-
mated as the depth of optical penetration (0.25 m).

[34] A simple model for CDOM dependence on depth
and wavelength was used to generate several aCDOM(�)
spectra (m�1), which were then added to the theoretical
mineral absorption. Referenced to 440 nm:

aCDOMð�;dÞ¼ aCDOMð440;0Þ�expð�d=5Þ�exp ½���ð��440Þ�;
(9)

Figure 4. Modeling approach for deriving suspended sediment concentrations (a–h in Table 1).
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where � is a slope parameter which has been observed to
vary from 0.011 to 0.021 due to a difference in contribu-
tions by fulvic and humic acids [Bukata et al., 1995], and d
is depth (m). We used a � of 0.014 m�1 based on mean val-
ues from Australian inland waters [Kirk, 1994; Mobley,
1994]. The reference absorption aCDOM(440,0) was then
varied from 0.4 to 4 m�1 (Figure 6).

[35] Radiometric conditions were selected to match the
lighting and atmospheric state near noon (19.42 UTC) on
the first day of the field campaign (Table 1). Hydrolight
accepts a total incident irradiance from the user—then par-
titions it into a diffuse Ed(diffuse) and direct Ed(direct)
component using a coupled atmospheric model, RAD-
TRAN [Gregg and Carder, 1990]. RADTRAN was para-
meterized using values for the relative humidity (66%),
precipitable water (1.2 cm), and horizontal visibility
(30 km), which optimized the fit between Ls near noon
measured in the field on 15 February 2006 at 38�N, 121�W,

and the Ls obtained from RADTRAN (Table 1). Although
RADTRAN was developed for maritime atmospheres, the
partitioned sky radiance matches the field measurements
well with a visibility of 30 km, except below 450 nm where
mineral particles have little impact. A complete radiance
distribution was then computed for clear conditions using
the Harrison and Coombes [1988] semianalytic model. With
these parameters, and accepting some assumptions about the
transfer of upwelling light across the water surface, the radi-
ative transfer equations were solved in Hydrolight, yielding
Rrs(�) for a specific SSC and CDOM level. Hydrolight
assumes a plane-parallel water body of infinite horizontal
extent, and we assumed an infinite vertical extent below 3 m
based on calculations of the diffuse attenuation coefficient,
Kd(z,�), with a SSC of 2.0 mg L�1 and the atmospheric pa-
rameters for 15 February 2006 (Table 1).

[36] In order to determine the depth at which there is
nearly complete extinction of the incident light, we calculated

Figure 5. Optical model parameters. (a) Power law fit to the number size distribution of core MSFR18
(60–62 cm) from the Feather River floodplain. Location of core shown in Figure 2. (b) Effect of the real
part nr and the imaginary part n0 of the refractive index on the modeled mass-specific absorption coeffi-
cient. The high and medium n0 are based on the data of Patterson et al. [1977]. For each, the values
decline exponentially from a wavelength of 300 nm (n0 ¼ 0.01;0.002) to a wavelength of 600 nm (n0 ¼
0.002;0.001) and are constant thereafter. A slope of j ¼ �2 was used for all cases. (c) and (d) as for (b)
but for (c) the mass-specific scattering coefficient and (d) backscattering coefficient. A montmorillonite
(1.14) with a 10�3 n0 was used to model the Feather River sediment (see text for details).
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values of Kd(z,�) with the lowest expected SSC (2.0 mg L�1)
and for a wavelength of 650 nm, with the least absorption by
water within our range of interest. Using the Beer-Lambert
law describing the attenuation of light through a medium, we
could then obtain the depth at which less than �1% of the
light intensity remains [Kirk, 1994]. This gives us the maxi-
mum expected optical depth, z (0.25 m) for these conditions.

[37] Finally, Rrs(�) was converted to water-leaving reflec-
tance, R(�) (unitless) to create an end-member library for
unmixing the atmospherically corrected Landsat images.
This step is required in order to obtain the same units as is
measured at the top of the atmosphere. Irradiance reflec-
tance R(�) is related to Rrs(�) by a ratio Q(�,’,z ¼ 0,�)
defined just below the water surface:

Qð�; ’; z ¼ 0; �Þ 	 Euðz ¼ 0; �Þ
Luð�; ’; z ¼ 0; �Þ ; (10)

where Eu(z ¼ 0,�) is the upward (water-leaving) irradiance
(W m�2 nm�1), divided by the upward directed radiance
Lu(�,’,z ¼ 0,�). Both Eu(z ¼ 0,�) and Lu(�,’,z ¼ 0,�) were
determined in Hydrolight, and R(�) defined as the product
of Rrs(�) and Q(�,’,z ¼ 0,�) along a path perpendicular to
the water surface.

3.5. Inverse Modeling

[38] Forward modeling in Hydrolight generated a set of
Rrs spectra which could then be statistically compared to the
field measurements in order to estimate aCDOM(440,0). The
criterion for the best fit was the least-square distance (D)
computed between the modeled Rrs(�)Hydrolight and meas-
ured spectra Rrs(�)ASD with 65.9 and 96.5 mg L�1 SSC:

D ¼
X
�

½Rrsð�ÞASD � Rrsð�ÞHydrolight�
2: (11)

There is a considerable amount of variability associated
with the field measurements of SSC/Rrs (Figure 7). These
two SSC levels bracket a best fit (65.9 mg L�1) based on

the shape of the model spectra conforming to the shape of
the field spectra, and then a fit to the highest measured SSC
(96.5 mg L�1). By the first criteria, aCDOM(440,0) was set
to 2.5 m�1, with an RMSE (in % reflectance) of between
0.0304% and 0.0437% (at 65.9 and 96.5 mg L�1, respec-
tively). Using this aCDOM(440,0), a set of Rrs spectra were
modeled for suspended sediment concentrations ranging
from 2 to 203 mg L�1 (Figure 8).

3.6. Image Analysis

[39] Landsat MSS and TM data were acquired for floods
on 21 March 1986 and 14 January 1997, respectively. Three
preprocessing steps were required in order to obtain abso-
lute surface SSC values in milligrams per liter—geolocating
and atmospherically correcting the images, and subse-
quently applying a mask to exclude areas not clearly inun-
dated. All data sets were reprojected to UTM Zone 10N,
WGS84 datum. Images were analyzed using linear mixture
analysis after applying a mask generated using low values
from a ratio of the green to near-infrared bands. Finally, a
look-up table was applied to convert the end-member frac-
tions to SSC, and the error assessed. Details of the atmos-
pheric correction of the Landsat images and the conversion
to �w are given in the Appendix.

[40] The two selected end members derived from Hydro-
light represent R spectra with a given concentration of sus-
pended sediment—a low SSC of 2 mg L�1and a high of
203 mg L�1—and CDOM absorption (Figure 8). Mixture
equations were solved using these end members and an
unconstrained, singular value decomposition implemented
in VIPER Tools [Roberts et al., 2007] and ENVI (RSI). Re-
flectance spectra from Hydrolight, convolved to fit each
sensor band pass, were then analyzed using linear mixture
analysis to derive the fractions reported in the calibration
curves shown as Figure 9. These values have been scaled
such that a fraction of 0% is equal to a DN of 100 and a
fraction of 100% is equal to a DN of 200. Although the

Figure 6. Spectral absorption coefficients. Each line is for an absorption coefficient (m�1) of color dis-
solved organic matter (CDOM) at a reference wavelength of 440 nm, and shows the decay in absorption
with increasing wavelength. These spectra were added to the mineral absorption coefficients to model
the remote-sensing reflectance (Rrs) in Hydrolight.
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calibration curve is extended slightly beyond a DN of 200,
we could only classify pixels with DNs > 200 as greater
than our maximum end-member value (203 mg L�1).
Finally, a look-up table was generated to relate the fraction
values for the Feather River images to absolute values of
surface SSC in milligram per liter.

4. Results
[41] Little sediment is released by Oroville Dam (Figure 1)

and concentrations are generally low directly downstream
of the reservoir. However, mobilization of dredge mining

spoils between Oroville Dam and Marysville is apparent
in moderate levels of SSC ranging from 40 to 120 mg L�1

in 1986 (Figure 10) and 20 to over 60 mg L�1 in 1997
(Figure 11). By 56.3 km upstream from Verona (the conflu-
ence of the Feather and Sacramento Rivers), concentrations
drop to between 30 and 80 mg L�1 in 1986, and then by
half in 1997 (10–30 mg L�1), then increase again with rela-
tively high contributions from the Yuba River. During the
1997 New Year’s flood, the greatest sediment load was
transported by this tributary. Below Marysville, contribu-
tions from the Yuba River caused an increase in the wash-
load to 50–130 mg L�1 in 1986 while the concentrations in

Figure 8. Water-leaving reflectance (R) for two end members used in the spectral mixture analysis (2
and 203 mg L�1). Spectra were derived from optical and radiative transfer modeling in Hydrolight and
convolved to fit the Landsat TM sensor band-pass for the first three visible bands. Modeled spectra are
for montmorillonite (nr ¼ 1.14) with a 10�3 n0, an aCDOM(440,0) of 2.5 m�1, and a PSD slope (j) of �2
(see text for details). Also shown are pixel R values for a water-sediment-CDOM mixture taken from the
1/14/97 Landsat image of the Feather River, and the same pixel with a hypothetical increase of 1% in
the reflectance in order to show the impact of a 10 km difference in the visibility parameter used to
model path radiance in MODTRAN.

Figure 7. Remote sensing reflectance (Rrs) for a range of sediment concentrations (mg L�1) suspended
in the Sacramento River. Shown for comparison are the spectra resulting from optical and radiative
transfer modeling in Hydrolight (black), and computed from measured radiance (color) using an Analyti-
cal Spectral Devices (ASD) FieldSpec Pro (Boulder, Colo.) with a spectral range of 350–2500 nm and
an 8� foreoptic. Samples shown here were collected on 15 February 2006, at the locations shown in
Figure 2 on the Sacramento River.
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1997 were about the same. Suspended sediment loads
decrease on the Yuba below Englebright Dam (10 to >210
mg L�1), across the gold fields to the confluence with the
Feather (10–120 mg L�1). Concentrations in the Feather
drop again below a crevasse where sediment was deposited
into the Sutter Bypass, so that by 12 km above Verona SSC
is 20–50 mg L�1 (Figure 10). Clearer backchannels and
ponded floodplain water range from 0 to 40 mg L�1.

[42] In Figure 12 our field measurements and the surface
modeled SSCs are plotted against other field samples
acquired near the USGS gauge at Nicolaus (Figure 1) cov-
ering a span of three years (1996–1998). The model data
fall within the envelope of field samples; however, the
model underpredicts the concentration at Nicolaus in 1997
at the time of the image acquisition by up to 80 mg L�1.

5. Discussion and Error Analysis
[43] There is increasing interest in the fluvial community

in using physically based models to interpret hydrologic
parameters from remote sensing data [Marcus and Fonstad,
2010]. Our field samples exhibited the same problems that
make it difficult to produce quality empirical relationships
between SSC and Rrs. Field data sets relating suspended
sediment concentration to Rrs are limited by the difficulty
in capturing the full range of optical conditions which can
exist in the water body, and by the nonlinear response of
Rrs to SSC (Figure 9). In addition, this response depends on
the character of suspended sediment—in particular, the par-
ticle-size distribution—and is affected by the presence of
dissolved organic matter. Here we formulate an approach
that is based upon the physics of the problem of inferring
water quality parameters remotely. We are able to do so
because of recent advances in computer processing capabil-
ities and the numerical solutions to complex radiative trans-

fer equations. We hope that we have presented a coherent
structure for translating information about the mineralogy
and particle-size distribution of sediment transported in
suspension to maps of suspended sediment concentrations.
At this point however, there are still many uncertainties in
the input model parameters, and we were not able to
achieve particularly good model closure. However we are
able to quantity the sources of error arising from this
approach given our assumptions, and discuss these errors in
section 5.1 in order to inform future efforts toward building
a physically based model relating SSC and Rrs.

5.1. Accuracy Assessment

[44] The final accuracy of this approach depends upon
the sum of the errors at each step in the image transforma-
tion processes and on the suitability of the end members.
Table 2 summarizes the impacts on SSC (increasing or
decreasing) of overestimating the principle model parame-
ters. Error arising from converting the image DNs to R is
primarily driven by the uncertainty in the atmospheric mod-
eling; this conversion is especially difficult over water where
the returned signal is low. To test the impact of the modeled
path radiance (see Appendix) on the resulting sediment con-
centrations, MODTRAN (moderate spectral atmospheric re-
solution transmittance algorithm and computer model) [Berk
et al., 2003] was run with a visibility—a surrogate for the
aerosol concentration—of 20 and 30 km. A 10 km decrease
in the visibility parameter had no impact on low SSCs (<50
mg L�1), but reduced the predicted SSC by 10 mg L�1 at
higher concentrations.

[45] Conversion to SSC includes error from the mixture
analysis which is explicitly known from the residuals, and
from the reflectance spectra used as end members. All of
the RMS errors were well under 0.03, translating into

10 mg L�1 impact on the predicted SSC. In addition,

Figure 9. Calibration of spectral mixture analysis results to surface sediment concentrations. The frac-
tion values from the sediment-water fraction image are converted to suspended sediment concentrations
(mg L�1) using the above relationship. These curves are taken from Hydrolight generated spectra, based
on the inversion of field spectra from the Sacramento River and convolved to fit Landsat TM5 bandwidth
specifications for the expected range of concentrations.
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there were no negative or superpositive (>100%) values in
the rivers, suggesting that the model end members are
appropriate.

[46] Several assumptions went into modeling the end
members. In order to assess the impact of these assump-
tions, the most sensitive parameter values were varied over
a plausible range. Errors in nr are primarily manifested

in bbmin (Figure 5d), while errors in n0 dominate the amin

spectrum (Figure 5b). The particle-size distribution may be
biased toward larger particles because the sample was
obtained from a floodplain core. Thus Rrs was also modeled
with a steeper slope parameter (j ¼ �4), typically applied
to distributions of suspended particles in the ocean. Given a
SSC of 70.8 mg L�1, this slope parameter increased Rrs by
4.68% at the peak (588 nm) relative to the core-derived
slope, translating to a 20 mg L�1 decrease in the predicted
SSC. However, the field samples and the set of image
results suggest that an under-prediction of SSC is more
likely (Figure 12). Furthermore, recent work establishing
the size distribution of inland water mineral particle reports
a much coarser size distribution (average j ¼ �2.8) than
the typically assumed Junge slope (j of �4) of marine detri-
tal particles [Peng et al., 2007]. Also, the magnitude of the
predicted b�m falls within the measured range for several
coastal and shelf marine environments, which are close to
or <0.5 m2 g�1 in the green part of the spectrum [Babin

Figure 10. Surface sediment concentrations (mg L�1) of the Feather River on 21 March 1986. Left
panel is from Gridley to Marysville, and the right panel is from Marysville to the Sutter Bypass. Concen-
trations were derived using the look-up table in Figure 9 to convert end-member fractions from a spectral
mixture analysis. A two-end-member model was used, with synthetic end members derived from optical
and radiative transfer modeling in Hydrolight, and inversion of field spectra from the Sacramento River
to estimate aCDOM(440,0). The high end member was 203 mg L�1, and the low 2.0 mg L�1.

Table 2. Summary of Impacts From Overestimating the Primary
Model Input Parameters on SSC

Parameter
Impact of

Overestimating on SSC

Path radiance, Lpath (�) estimated
using visibility

þ

Number-size distribution, j �
Real refractive index, nr(�) þ
Imaginary refractive index, n0(�) þ
CDOM, aCDOM(d,�) �
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Figure 11. Surface sediment concentrations (mg L�1) of the Feather River on 14 January 1997.

Figure 12. Comparison of field samples (black diamonds) of surface sediment concentrations (SSC,
mg L�1) from the USGS at the Nicolaus gauge station (1996–1998) to concentrations derived from the
March 1986 and January 1997 Landsat images (open triangles). See Figure 3 for gauge location. Note
that the error bars represent the accuracy of the look-up table, and are not representative of the cumula-
tive error.
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et al., 2003; Bowers and Binding, 2006; Wozniak and
Stramski, 2004]. Consequently, it is unlikely that the cho-
sen slope resulted in overprediction of SSC.

[47] Wozniak and Stramski [2004] report a range of nr

values for minerals commonly suspended in seawater. The
lowest clay value (1.124) was used to test the impact on
SSC estimation, in keeping with the assumption that the
bias in the modeled spectrum is toward Rrs values that are
too high. If nr was overestimated by as much as 0.016, the
peak Rrs was overestimated by only 0.14% for a SSC of
70.8 mg L�1. Increasing the mineral absorption to the high
n0 values has an even smaller impact on Rrs (�0.04%). Both
changes to the refractive index would increase the image
SSC values by between 4 and 40 mg L�1, with a greater
impact at higher concentrations. However, changing the re-
fractive index also alters the Rrs spectral shape. Overall, the
shape of the modeled spectra with the chosen refractive
index better matched the two field spectra used to fit the pa-
rameters. In addition it is unlikely that n0 exceeds 10�3, as
the few measurements which do exist for clays suspended
in water give this as an upper bound [Gillespie et al., 1974].
However, it is possible that the Feather River transports soil
high in strongly absorbing iron oxides [Sokolik and Toon,
1999; Stramski et al., 2007], driving a greater value for n0.

[48] These contradictory tendencies illustrate the diffi-
culty of this approach, as it appears that a range of mineral
parameters (i.e., particle size, mineralogy) can produce sim-
ilar Rrs spectra. Furthermore, real nonspherical and inter-
nally heterogeneous soil particles have complex absorption
and scattering centers. For example, iron, which is a major
pigmenting agent, can occur as a surface coating or an ele-
ment of mineral lattice, or it can form crystals of oxides.
These soil particles can have an order-of-magnitude greater
am depending on the size distribution since smaller particles
are more absorbing [Stramski et al., 2007].

[49] With this constraint, the predicted error associated
with the estimated SSC for the images is on the order of
15–25 mg L�1. Further work is required to better establish
the optical properties of suspended sediment, however field
measurements of suspended sediment concentrations are
rarely more accurate [Meade, 1985].

5.2. Inversion and Dissolved Organic Carbon

[50] This approach requires a unique solution to a combi-
nation of inherent optical properties and boundary condi-
tions, and the accuracy of the SSC retrieval depends on how
well CDOM is parameterized. Two field Rrs spectra were
used to constrain the inversion problem. However our field
data illustrate the difficulty in acquiring precise empirical
relationships between high levels of SSC and Rrs, poten-
tially explaining why so few empirical relationships exist
for rivers with high levels of suspended sediment. Temporal
and spatial variability in the suspended sediment transported
by the Sacramento and Feather River resulted in a differ-
ence of up to 7% between SSC replicates, and of 20–30 mg
L�1 for indistinguishable field spectra. For example, the Rrs

associated with the 65.9 mg L�1 sample also could have
been up to 96.5 mg L�1 (Figure 7).

[51] The uncertainty in the field measurements translates
into the inferred CDOM level; however the CDOM esti-
mate from the inversion appears reasonable. Based on data
from 2000 to 2002 collected near the gauge at Nicolaus, the

concentrations of dissolved organic carbon (DOC) do not
vary with the total suspended load, and are relatively con-
stant downstream from Oroville Dam (station A5519100)
to Verona (station A51010.50; http://waterdata.usgs.gov).
Concentrations show a slight seasonal trend, increasing
during periods of rising water in the winter such that the
total range is 1.2–4.2 mg L�1 DOC for this period at Ver-
ona. This gives a likely upper bound to the DOC concentra-
tion during the 1997 flood; the peak at Nicolaus was
greater (11.36 m) than when the high (4.3 mg L�1) mea-
surement was taken. DOC concentrations are generally
about half the dissolved organic matter by weight, and are
on average near 9 to 10 mg L�1 in inland waters [Bukata
et al., 1995].

[52] Observations of aCDOM(440, 0) in rivers range from
0.44 m�1 for the Molonglo River in Australia to 12.44 m�1

for the Carrao in Venezuela [Kirk, 1994]. Applying an
aCDOM(440, 0) of 4.0 m�1 to Hydrolight lowered the peak
Rrs, compared to an aCDOM(440, 0) value of 2.5 m�1, by
0.002 sr�1, translating to an increase of �20 mg L�1

around a SSC of 70 mg L�1. However, this also places
the peak reflectance at 647 nm. With aCDOM(440, 0) at
2.5 m�1, Rrs peaks at 587 nm; this is much more consistent
with the field measurements (Rrs peak 585 nm). Again, it is
important to note the impact of varying these parameters
on the spectral shape.

[53] Since only one measurement exists for the 1997
flood, and none for the 1986 event, it is not possible to ex-
plicitly assess the accuracy of applying this calibration to
flood conditions. The image-derived 1997 values are low
(up to �35 mg L�1, Figure 12), suggesting the reflectance
of the end member associated with a particular SSC was
too high. In fact, as discussed above, many of the uncer-
tainties in this approach would produce a positive error,
i.e., R being too bright (Table 2).

6. Conclusions
[54] On many rivers, studies of suspended sediment

transport are constrained by the lack of SSC measurements,
especially during floods. Since the 1970s, the ability to
retrieve these concentrations from remotely sensed imagery
has opened up the possibility for reconstructing past trans-
port conditions. Unfortunately there is still a great deal of
uncertainty in the relation between the water-leaving reflec-
tance and these concentrations in turbid, inland water
bodies, because, in part, of the impact that different particle
sizes and mineralogy have on scattering properties. This
impact is addressed here by considering the number-size
distribution of the sediment in transport during floods on
the Feather River, and assigning a mineralogy to the sedi-
ment in order to model the contribution by suspended min-
eral particles to the inherent optical properties of the river
water. Furthermore, the dissolved component of organic
matter was estimated using an inversion of a field data set.

[55] Most of the errors from the approach would produce
at most �10 mg L�1 difference in the predicted SSC. How-
ever, temporal and spatial variability in SSC resulted in
field spectra with SSC differences of up to 30 mg L�1, and
an inaccurate nr resulted in an under-estimate of up to 40
mg L�1 at SSC levels >50 mg L�1. Since the approach is
only as good as the field measurements, an improved
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calibration could be achieved by more extensive sampling
so that the fit is better constrained. Alternatively, if CDOM
absorption is measured in the field, the calibration would
depend less upon field measurements of SSC, which as dis-
cussed in section 1 often cannot be acquired during flood
conditions. Overall the modeled reflectance closely fol-
lowed the shape of the field spectra, and predicted similar
concentration ranges and patterns as field measurements of
SSC. Therefore this method shows promise for deriving
past flood concentrations using water and sediment proper-
ties from current, lower flow conditions.

Appendix A: Determination of Mineral IOPs
[56] In order to obtain the mass-specific absorption and

scattering coefficients (IOPs) for the suspended sediment,
as required by Hydrolight, we first solved the Mie equa-
tions of Bohren and Huffman [1983] coded in FASTMIE
(http://misclab.umeoce.maine.edu/software.php) to obtain
efficiency factors Qa(�), QB(�), Qb(�) for each particle
size. Following the methods of Bricaud and Morel [1986],
bulk average efficiency factors Qx¼a;b;Bð�Þ were then calcu-
lated for the spectral range where the signal of mineral par-
ticles suspended in water dominates (� ¼ 400–800 nm).

[57] In order to determine the bulk average efficiency fac-
tors, a particle-size distribution is needed. From theoretical
work, the particle-size distribution of suspended fine sedi-
ment can be approximated by a power law (Junge-type)
size distribution [Bader, 1970, equation (2)], where

NðxÞ ¼ k
x

x0

� ��m

(A1)

and N(x) is the number of particles in the mixture volume
of a size x, x0 is a reference size (usually set to unity), and k
and m are coefficients describing the distribution shape.
This distribution function is valid when very small particles
have a negligible volume and the number of the largest par-
ticles is negligibly small. For Mie computations of polydis-
perse systems, the number size distribution is more relevant
than the cumulative distribution given in equation (A1).
Thus, where the size parameter is the volume (v replaces x),
the number of particles in the size interval from v to v þ dv
can be written as

dNðvÞ
dv

����
���� ¼ kmv�ðmþ1Þ 	 Kv�j: (A2)

[58] Bulk average efficiency factors were determined by
weighting the individual factors for each diameter i by the
particle-size distribution via

Qxð�Þ ¼

Z Dmax

Dmin
Qið�;DÞKDjD2dD

Z Dmax

Dmin
KDjD2dD

; (A3)

where D is the particle size of the mineral. The limits to the
above equation (Dmin and Dmax) were set to capture the
range of the most optically significant mineral size fraction,
and thus Dmax was set low, at 30 mm, while Dmin was set at
half the SediGraph detection limit (0.05 mm, Table 1).

[59] From this and a mineral density the model IOPs of
the suspended particle mixture were calculated using the
approach of Wozniak and Stramski [2004]:

x�mð�Þ 	
3Qxð�Þ

2�s

Z Dmax

Dmin
KDjD2dD

Z Dmax

Dmin
KDjD3dD

; (A4)

where x ¼ a, b, or bB [Bricaud and Morel, 1986] and �s is
the mineral density.

Appendix B
B1. Landsat Image Calibration and Atmospheric
Correction Image Calibration

[60] Conversion from the calibrated and quantized scaled
radiance (QCAL) in digital numbers to radiance L� (W
m�2 sr�1 mm�1) is given by

L� ¼ G � QCALþ B (B1)

with the following gains (G) and offsets (B) for MSS 5 and
TM 5.

[61] A modified approach was adopted for radiometric
calibration of the L5 TM sensor in order to account for deg-
radation in the internal calibration lamps over time. Now
calibration is implemented using a time-dependent look-up
table generated from the lifetime gain equations [Teillet et
al., 2001], a cross calibration with the Landsat 7 Enhanced
Thematic Mapper Plus, and the instrument’s response to
pseudo-invariant desert sites [Chander et al., 2007]. Fur-
thermore, biases are applied line-by-line (rather than by
scene) based on the dark shutter responses acquired from
each scan line, and the regression based offset discarded.
These changes bring the L5 calibration into line with the
L7 ETM þ protocol.

[62] Conversion to L� (W m�2 sr�1 mm�1) is then given by

L� ¼ Grescale � QCALþ Brescale; (B2)

where

Grescale ¼
LMAX� � LMIN�

QCALmax
; (B3)

Brescale ¼ LMIN�; (B4)

and QCALmax is the maximum quantized calibrated pixel
value. LMIN� and LMAX� are the spectral radiances (W m�2

sr�1 mm�1) for each band at a digital number of 0 and 255
(QCALmax) respectively. Gains (Grescale) and offsets (Brescale)
were defined by the post-calibration dynamic range (LMIN�
and LMAX�) given in Table B1 for L5 images acquired after
5 May 2003 [Chander et al., 2007].

B2. Atmospheric Correction
[63] Atmospheric correction is generally performed by

modeling the path radiance (�path) and transmittance (�) of
the atmosphere at the time and location that the image was
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acquired using radiative transfer algorithms. We applied
MODTRAN v. 4.3 (moderate spectral atmospheric resolu-
tion transmittance algorithm and computer model), an
updated version of LOWTRAN, developed by the Air
Force Research Lab, Space Vehicles Directorate, in collab-
oration with Spectral Sciences, Inc [Berk et al., 2003] to
calculate the atmospheric transmittance, background
atmospheric radiance, single-scattered solar radiance, mul-
tiple-scattered solar radiance, and direct solar irradiance
[Bukata et al., 1995]. MODTRAN requires inputs of the
time, date, and location of image acquisition, satellite ele-
vation, mean scene elevation, water vapor content, an esti-
mate of the visibility which is used to estimate the aerosol
content, and a generic atmospheric mode (see Table 1).
Generic atmospheric models are necessary for analyzing
imagery where the meteorological conditions were not
recorded, as is often the case with historic imagery.

[64] Once the data were calibrated and converted to radi-
ance, an atmospheric correction could be applied using the
MODTRAN 4 radiative transfer code run in ACORN
(atmospheric correction now). Inputs specific to the sensor
and solar geometry at the time of acquisition, 10 mm of
atmospheric water, and a mean elevation of 156 m were
used for all images (Table 1). A mid latitude winter atmos-
phere was applied to the TM 5 image with a 30 km hori-
zontal visibility parameter to estimate the aerosol content
of the atmosphere. However a lower visibility (20 km) pa-
rameter, and a mid latitude summer atmospheric model
was used for the MSS image to account for the change in
atmosphere during the spring in the Sacramento Valley.
Visibility was set to minimize reflectance in deep, clear
water bodies in the image, and was kept within the range of
visibility measured on those days at the Sacramento Airport
(http://cdo.ncdc.noaa.gov/CDO/cdo).
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