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a b s t r a c t 

Historically, hydrological models have been developed to represent land-atmosphere interactions by simulating 

water storage and water fluxes. These models, however, have their own unique characteristics (strength and 

weakness) in capturing different aspects of the water cycle, and their results are typically compared to or cali- 

brated against in-situ observations such as river runoff measurements. As a result, there may be gross inaccuracies 

in the estimation of water storage states produced by these models. In this study, we present the novel approach 

of Dynamic Model Data Averaging (DMDA), which can be used to compare and merge multi-model water storage 

simulations with monthly Terrestrial Water Storage (TWS, a vertical summation of surface and sub-surface water 

storage) estimates from the Gravity Recovery And Climate Experiment (GRACE) satellite mission. Here, the main 

hypothesis is that merging GRACE data with multi-model outputs likely provides more skillful hydrological esti- 

mations compared to a single model or data set. Theoretically, the proposed DMDA combines the benefits of the 

Kalman Filter (KF) and Bayesian Model Averaging (BMA) techniques and has the capability to deal with various 

observations and models with different error structures. Based on the Bayes theory, DMDA provides time-variable 

weights for hydrological models to compute an average of their outputs that are best fited to GRACE TWS es- 

timates. Numerically, the DMDA method is implemented by integrating the output of six hydrological and land 

surface models (PCR-GLOBWB, SURFEX-TRIP, LISFLOOD, HBV-SIMREG, W3RA, and ORCHIDEE) and monthly 

GRACE TWS estimates (2002–2012) within the world’s 33 largest river basins, while considering the inherent 

uncertainties of all inputs. Our results indicate that DMDA correctly separates GRACE TWS estimates into sur- 

face water, soil moisture and groundwater compartments. Linear trends fitted to the DMDA-derived groundwater 

compartment are found to be different from those of original models. This means that anthropogenic influences 

within the GRACE data, which are not well reflected by models, are introduced by DMDA. We also find that tem- 

poral correlation coefficients between the DMDA-derived individual water storage estimations (surface water, 

soil moisture, and groundwater) and the El Niño Southern Oscillation (ENSO) index are considerably increased 

compared to those derived between individual model simulations and ENSO (e.g., an increase from − 0.2 to 0.6 

in the Murray River Basin). For the Nile River Basin, they changed from 0.1 to 0.4 for the soil moisture, and from 

0.3 to 0.7 for the surface water compartment. Comparisons between the DMDA-derived surface water and those 

from independent satellite altimetry observations indicate that after implementing DMDA, temporal correlation 

coefficients within major lakes are increased. Based on these results, we have gained confidence in the DMDA 

water storage estimates to be used for improving the characterization of water storage over broad regions of the 

globe. 

∗ Corresponding author. 

E-mail address: mehrnegarn@cardiff.ac.uk (N. Mehrnegar). 

https://doi.org/10.1016/j.advwatres.2020.103528 

Received 14 March 2019; Received in revised form 3 December 2019; Accepted 3 February 2020 

Available online 6 February 2020 

0309-1708/© 2020 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.advwatres.2020.103528
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2020.103528&domain=pdf
mailto:mehrnegarn@cardiff.ac.uk
https://doi.org/10.1016/j.advwatres.2020.103528


N. Mehrnegar, O. Jones and M.B. Singer et al. Advances in Water Resources 138 (2020) 103528 

1

 

c  

s  

c  

i  

s  

s  

r  

h  

c  

t  

w  

m  

p  

i  

r  

i  

(

 

e  

(

o  

i  

g  

S  

(  

t  

g  

l  

l  

l

 

t  

a  

c  

t  

G  

t  

l  

c  

g  

t  

i  

f  

e  

a  

u  

a  

f  

s

 

a  

c

 

p  

o  

f  

T  

e  

w  

s  

o  

r  

p  

t  

a

 

o  

p  

p  

r  

r  

S  

m  

e  

m  

o  

A  

s  

s  

t  

u  

a  

e

 

A  

d  

T  

e  

a  

T  

w  

m  

F  

2  

p  

a  

m  

(  

f  

a  

K  

B  

(  

M  

I  

h  

s  

t  

w  

i  

s  

e  

o  

e  

m  

s  

f  

i  

t

 

c  

F  

i  
. Introduction 

Studying global water storage changes and their relationships with

limate variability and exploring their trends are important to under-

tand the interactions between the Earth’s water, energy, and carbon

ycles. It is also essential for managing water resources and understand-

ng floods and food risks in a changing climate. In-situ and/or remote

ensing observations provide estimates of different aspects of the Earth

ystem, but they do not provide water cycle closure due to sampling and

etrieval errors. In practice, hydrological models are used to quantify

ydro-meteorological processes such as interactions between the global

limate system and the water cycle ( Sheffield et al., 2012 ), the contribu-

ion of land hydrology to global sea level rise ( Boening et al., 2012 ), as

ell as to support applications related to water resources planning and

anagement ( Hanington et al., 2017 ). However, model simulations are

rone to errors due to imperfect model structure, as well as errors in

nputs and forcing data that are used to run model simulations. As a

esult, available models operating at regional to global scales have lim-

ted skills to reflect human impacts on water storage and runoff changes

 Wada et al., 2012; Scanlon et al., 2018; Singer et al., 2018 ). 

Among available remote sensing techniques, the Gravity Recov-

ry And Climate Experiment (GRACE, 2002–2017) satellite mission

 Tapley et al., 2004 ) and its Follow-On mission (GRACE-FO, 2018–

nward) provide an opportunity to assess the global water cycle by mon-

toring time-variable gravity fields. Global GRACE-derived time-variable

ravity field data can be used to estimate changes in Terrestrial Water

torage (TWS), which is a vertical summation of canopy, surface water

lakes, rivers, and wetlands), as well as soil moisture and groundwa-

er storage. Changes in TWS provide a critical measure of regional and

lobal water balances, which cannot be measured by any other satel-

ite mission. A review of GRACE applications in hydrology, and particu-

arly for groundwater monitoring, can be found in Frappart and Ramil-

ien (2018) . 

GRACE data can be used in conjunction with hydrological models

o maximize information gained from modelling with rationalisation

nd separation of GRACE TWS. Thus, the gravimetric data from GRACE

an inject realism into regional hydrological predictions, which are of-

en poorly constrained in terms of TWS. Generally speaking, integrating

RACE data with hydrological models is important from two perspec-

ives: (1) it can update (modify) water storage simulation within hydro-

ogical models and (2) it vertically separates GRACE TWS into storage

ompartments. The first point is of interest for hydrologists since most

lobal models are not usually combined with water storage observa-

ions ( Bai et al., 2018 ). Therefore, such updates may lead to more real-

stic water storage simulations, which makes these models more useful

or water resource applications (see e.g., Werth et al., 2009; Mostafaie

t al., 2018 ). Regarding the second point, it is important to state that

ny attempt to vertically separate GRACE-derived TWS into its individ-

al components requires a priori information from other sources, such

s, hydrological models, satellite altimetry observations to estimate sur-

ace water storage, and soil moisture remote sensing data to estimate

hallow depth soil moisture storage changes ( Forootan et al., 2014 ). 

Various studies have developed techniques to merge multi-resources

nd achieve vertical separation of surface and sub-surface water storage

ompartments by several methods outlined below. 

(a) Forward modeling techniques are used to evaluate different com-

artments of mass variations through a simple reduction process, relying

n model and/or observation data for other compartments, e.g., sur-

ace water and soil moisture, if groundwater should be estimated (e.g.,

iwari et al., 2009; Rodell et al., 2009; Strassberg et al., 2009; Feng

t al., 2013; Khandu et al., 2016 ). This method is relatively straightfor-

ard, but it is not necessarily the most accurate way to separate GRACE

ignals, due to the reflection of modeling error and/or observation errors
n the final estimation of mass changes. Also, the spatial and temporal

esolution of the observations (from satellites or in-situ) and model out-

uts, as well as their signal content are not necessarily consistent (see

he discussions in, e.g., Forootan et al., 2014 ). Most of these limitations

re taken into account by the methods described in what follows. 

(b) Statistical inversion techniques, which are formulated based

n statistical signal decomposition techniques, such as Principal Com-

onent Analysis (PCA, Lorenz, 1956 ) and its alternatives, e.g., Inde-

endent Component Analysis (ICA, Forootan and Kusche, 2012; Fo-

ootan and Kusche, 2013 ), have been used in previous studies to sepa-

ate GRACE TWS into individual water storage estimates. For example,

chmeer et al. (2012) used PCA to generate a priori information about

ass changes from global ocean, atmosphere, and land hydrology mod-

ls. Then, they applied a least squares technique to use GRACE TWS to

odify their priori estimates. A statistical inversion, which works based

n both PCA and ICA, was proposed in Forootan et al. (2014, 2017) and

wange et al. (2014) to separate GRACE TWS using auxiliary data of

urface water from satellite altimetry and individual sub-surface water

torage estimate from a land surface model (Global Land Data Assimila-

ion System (GLDAS, Rodell et al., 2004 )). This inversion harmonizes the

se of all available data sets within a single least squares framework. As

 result, a more consistent mass estimate (than that of the forward mod-

ling in (a)) for individual water storage components can be achieved. 

(c) Data Assimilation (DA) as well as simultaneous Calibration/Data

ssimilation (C/DA) have been used in recent years to merge GRACE

ata with hydrological model outputs or other types of observations.

hese techniques rely on the model equations to relate water and en-

rgy fluxes to water storage changes. Therefore, unlike the inversion

pproach (b), combining information from observations (e.g., GRACE

WS estimates) and a model is performed in a physically justifiable

ay. DA or C/DA can potentially increase physical understanding of the

odel and improve the model states by decreasing the simulation errors.

or example, DA is used in Zaitchik et al. (2008) ; Girotto et al. (2016,

017) ; Tian et al. (2017) ; Khaki et al. (2018e,c) , while C/DA is ap-

lied in Schumacher et al. (2016, 2018) to improve global models such

s GLDAS ( Rodell et al., 2004 ), World-Wide Water Resources Assess-

ent (W3RA, Van Dijk, 2010 ), WaterGap Global Hydrological Model

WGHM, Döll et al., 2003 ), and NOAH Multi Parameterization Land Sur-

ace Model (NOAH-MP LSM, Niu et al., 2011 ). Most of the previous DA

nd C/DA are implemented regionally (except Van Dijk et al. (2014) ,

haki et al. (2017a, 2018a) ) for example over the Mississippi River

asin ( Zaitchik et al., 2008; Schumacher et al., 2016 ), Bangladesh

 Khaki et al., 2018e ), the Middle East ( Khaki et al., 2018c ), and the

urray-Darling River Basin ( Tian et al., 2017; Schumacher et al., 2018 ).

n addition, these studies rely on simulation from (only) one selected

ydrological model, which could contain errors in the model structure

uch as biases in the model’s internal parameters and boundary condi-

ions. In each of these studies, multiple realisations of the model-derived

ater storage simulations were generated by perturbing the input forc-

ng data and/or model parameters. A sequential integration techniques

uch as the Ensamble Kalman Filtering (EnKF, Evensen, 1994 ) or its

xtensions was then used to merge GRACE data with the (ensemble)

utputs of a single model (e.g., Schumacher et al., 2016; Schumacher

t al., 2018; Khaki et al., 2017b ). Van Dijk et al. (2014) used EnKF to

erge GRACE data with a priori data from models and other remote

ensing techniques. Their study covered the period of 2003–2012 and

ocused on updating the individual water storage estimates rather than

nterpreting the water storage estimates in terms of trends or addressing

he suitability of models used to perform the analyses. 

(d) In recent years, Bayesian-based techniques have been used to

ombine different observations with models and update their outputs.

or example, Long et al. (2017) applied the Bayesian Model Averag-

ng (BMA, Hsu et al., 2009 ) technique to average multiple GRACE TWS
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b  
roducts and global hydrological models to analyse spatial and tem-

oral variability of global TWS. However, their study did not assess

he update of individual surface and sub-surface water storage esti-

ates. Sha et al. (2018) used a model-data synthesis framework based on

ayesian Hierarchical Modelling (BHM, see e.g., Banerjee et al., 2004 )

o use GRACE TWS estimates to update land surface deformations de-

ived from Glacial Isostatic Adjustment (GIA) models. Their study did

ot, however, address global hydrological mass changes. 

It is worth mentioning here that the Ensamble Kalman Filter used

or DA and C/DA can also be classified as a Bayesian-based tech-

ique because the cost function for updating unknown state parame-

ers condition on the measurement data, is formulated based on the

ayes theory (see e.g., Evensen, 2003; Schumacher, 2016; Fang et al.,

018 ). Methods, such as Particle Filter (PF) and Particle Smoother (PS)

re also Bayesian ( Särkkä, 2013 ), and have already been applied in a

ide range of geophysical and hydrological applications. For example,

eerts and El Serafy (2006) compared the capability of EnKF and PF

o update a conceptual rainfall-runoff model using discharge and rain-

all data. Plaza Guingla et al. (2013) also used the standard PF to as-

imilate a densely sampled discharge records into a conceptual rainfall-

unoff model. However, Bain and Crisan (2008) and Del Moral and Mi-

lo (2000) show that the rate of convergence of the approximate prob-

bility distribution until attainment of the true posterior is inversely

roportional to the number of particles used in the filter. This means

hat the filter perfectly approximates the posterior distribution when

he number of particles tends to infinity. However, since the computa-

ional cost of PF grows with the number of particles, choosing a spe-

ific number of particles in the design of filters is a key parameter for

hese methods. The rationale for introducing a new Bayesian data-model

erging algorithm in this study is described in (e). 

(e) In this study, we present the Dynamic Model Data Averaging

ethod (DMDA, i.e., a modified version of Dynamic Model Averaging

DMA) approach presented by Raftery et al., 2010 ) to merge multi-

odel derived water storage simulations with GRACE TWS estimates,

s an alternative technique to that described in (d). Our main goal is to

valuate available model outputs against GRACE TWS and merge them

n a sensible way to gain more realistic insights about global surface

nd sub-surface water storage changes. The main hypothesis behind the

resented approach is that each global hydrological model has its own

nique characteristics and strengths in capturing different aspects of the

ater cycle. Therefore, relying on a single model often leads to predic-

ions that represent some phenomena or events well at the expenses

f others. Scanlon et al. (2018) recently compared GRACE TWS with

he outputs of global models, whose results indicated inconsistencies in

ong-term trends and cyclic (e.g., seasonal) components. Besides, many

tudies have concluded that effective combination of multiple models

ay provide more skillful hydrological simulations compared to a single

odel ( Duan et al., 2007 ). Therefore, a multi-model choice is considered

n this study. 

Our motivation to formulate the DMDA is based on its capability

o deal with various observations and models with different structures.

n summary, DMDA is based on the Bayes theory and provides time-

ariable weights to compute an average of hydrological model outputs,

ielding the best fit to GRACE TWS estimates, while considering their

rrors (see Section 3 ). These time-variable weights indicate which of

he available models at a given point in time fits better to GRACE TWS

stimates. These weights can then be used to separate the components

f TWS and modify the estimation of water storage in these individ-

al components. Therefore, the DMDA-derived ensemble is expected to

ield more skillful (realistic) hydrological simulations compared to any

ndividual model (see similar arguments in Duan et al., 2007 ). Here,

e promote the use of DMDA over the previously introduced EnKF, PF,

nd PS methods because it is computationally more efficient in handling

arge dimensional problems such as the global integration implemented

n this study. In addition, the DMDA’s time-variable weights can be used

o assess the performance of hydrological models, whereas this aspect
s missing in other merging techniques. More details about the compu-

ational aspects of DMDA are provided in Section 3 . 

To implement the DMDA method, surface and sub-surface water stor-

ge simulations of the six published global hydrological and land sur-

ace models ( Schellekens et al., 2017 ) are used. These models are struc-

urally different but they are all forced by the same reanalysis data set

WATCH-Forcing-Data-ERA-Interim, WFDEI Weedon et al., 2014 ) as in-

uts. GRACE-derived TWS estimates are then used in the DMDA method

o compare their outputs and merge them. A challenging problem in

erging GRACE TWS with the outputs from multiple hydrological mod-

ls is related to their different spatial and temporal resolutions. To over-

ome the computational problem caused by the spatial and temporal

ismatch, Schumacher et al. (2016) introduced spatial and temporal

atching functions, which are able to avoid computational problems.

n this study, we did not implement the spatial/temporal operator be-

ause both model outputs and GRACE data were set at monthly (tem-

oral) and basin-averaged (spatial). Handling the differences in spec-

ral domain is described in Section 2.2 . A realistic synthetic example is

resented in Section 4.1 to test the performance of the DMDA method,

here the true merged values are known and the method can be eval-

ated to provide the confidence that it can be applied to a real case

tudy. Our numerical results cover the world’s 33 largest river basins

see Figure ESM.1 in Electronic Supporting Material, ESM) for the period

f 2002–2012, during which both GRACE data and model simulations

re available. Global hydrological model outputs are compared against

RACE TWS, using DMDA-derived temporal weights, within the largest

iver basins for the period of this study (see Section 4.2 ). The DMDA-

erived updates, which are assigned to the long-term trend of surface

nd sub-surface water storage components, are explored and interpreted

see Section 4.3 ). 

Among many climatic factors that influence inter-annual to decadal

WS changes, the El Niño Southern Oscillation (ENSO, Barnston and

ivezey, 1987 ) events represent a dominant impact on global precipi-

ation and TWS changes (see, e.g., Hurkmans et al., 2009; Chen et al.,

010; Zhang et al., 2015; Forootan et al., 2016; Ni et al., 2018; Anyah

t al., 2018; Forootan et al., 2019 ). In this study, temporal correlation

oefficients between model-derived storage outputs and the ENSO index

re used as a measure to determine whether implementing the DMDA

elps to derive realistic storage simulations (see Section 4.3.1 ). In ad-

ition, independent surface water level observations from satellite al-

imetry within14 major lakes, located in different river basins around

he world, are used to validate our results (see Section 4.4 ). This paper

ontains an Electronic Supporting Material (ESM) document that pro-

ide auxiliary information to improve understanding of the performed

nvestigations. 

. Data sources 

The data used in this paper include the monthly GRACE data to com-

ute Terrestrial Water Storage (TWS) and individual water storage es-

imates from global models to provide a priori estimates to perform a

ayesian signal separation. GRACE TWS estimates are used in the DMDA

o modify the multi-model water storage outputs. 

.1. GRACE Data 

The latest release of the monthly GRACE level-2 (L2) product

RL06), expressed as dimensionless spherical harmonic coefficients

p to degree and order 90, are downloaded for the period of April

002 to December 2012 from the Center for Space Research (CSR,

ttp://www2.csr.utexas.edu/grace/RL06.html ). A limited length of the

RACE data is used here since the global hydrological model outputs of

chellekens et al. (2017) were available until 2012. 

Recommended corrections are applied to generate monthly TWS

elds from the GRACE product, i.e., degree 1 coefficients are replaced

y those from Swenson et al. (2008) to account for the movement of

http://www2.csr.utexas.edu/grace/RL06.html
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Table 1 

Overview of models used in this study and their water storage components. 

Model Water Storage Compartments 

Ground Water Soil layer Surface Water Canopy Snow Snow layer Water Use 

PCR-GLOBWB Yes 2 Yes Yes Yes 1 No 

W3RA Yes 3 No No Yes 1 No 

HBV-SIMREG Yes 1 No No Yes 1 No 

SURFEX-TRIP Yes 14 Yes Yes Yes 12 No 

LISFLOOD Yes 2 No No Yes 1 Yes 

ORCHIDEE No 11 Yes No Yes 6 irrigation 
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D  
he Earth’s center of mass. The zonal degree 2 spherical harmonic co-

fficients (C20) are replaced by more stable ones derived from Satel-

ite Laser Ranging (SLR) data ( Chen et al., 2007 ). Surface deforma-

ions known as the Glacial Isostatic Adjustment (GIA) are reduced us-

ng the output of the model provided by Wahr and Zhong (2012) .

RACE level-2’s correlated errors are reduced by applying the DDK2 an-

sotropic de-correlation filter ( Kusche et al., 2009 ). The application of

moothing filters causes a spatial leakage problem, which is evaluated

n terms of TWS errors following the approach in Wahr et al. (1998) ,

haki et al. (2018d) over the world’s 33 largest river basins as shown

n ESM.1. An overview of the TWS’s strength and our error estimates is

hown in ESM-section 2 (see Figure ESM.2). 

.2. Global hydrological model (GHM) outputs 

Monthly water balance components from six large-scale Global Hy-

rological Models (GHMs) including PCR-GLOBWB ( Van Beek et al.,

011; Wada et al., 2014 ), SURFEX-TRIP ( Decharme et al., 2013 ), LIS-

LOOD ( Van Der Knijff et al., 2010 ), HBV-SIMREG ( Lindström et al.,

997 ), W3RA ( Van Dijk, 2010 ), and ORCHIDEE ( Polcher et al., 2011 )

re used in this study to provide a priori information about groundwater,

oil moisture, surface water, canopy, and snow water storage compo-

ents. The output of these models are published by the eartH2Observe

ier-1 ( Schellekens et al., 2017 ), and are available at 0.5° spatial resolu-

ion covering the period of 1979–2012 which can be downloaded from

ttp://earth2observe.github.io/water-resource-reanalysis-v1 . 

Although, these models are structurally different, i.e., they use dif-

erent methodology to simulate water changes, they are driven by the

ame reanalysis-based forcing data set, WFDEI (WATCH Forcing Data

ethodology applied to ERA-Interim reanalysis Weedon et al., 2014 ).

n other words, all hydrological models that are used in this study may

epresent the TWS, but their respective approaches for simulating TWS

nd its corresponding storage compartments are not identical. For ex-

mple, Schellekens et al. (2017) state that PCR-GLOBWB and SURFEX-

RIP contain all surface and sub-surface water storage components in

heir TWS estimation. In contrast, TWS derived from LISFLOOD, HBV-

IMREG, and W3RA are equal to the summation of groundwater, soil

oisture, and snow, while that of ORCHIDEE is the summation of soil

oisture, surface water, and snow storage components. 

An overview of the model outputs used in this study is provided in

able 1 , and the linear trend (as a representative of monotonic long-term

torage changes) fitted to the model outputs are shown in ESM-section

. 

To ensure that the TWS estimates from GRACE L2 data and model

utputs have the same spectral content, 0.5° resolution hydrological

odel outputs are transformed into the spectral domain and truncated to

he maximum degree and order 90. The conversion follows an ordinary

ntegration while considering the Gibbs effect along the coast lines (for

ore details please see, e.g., Wang et al., 2006; Forootan et al., 2013 ).

asin averages of each model components and their errors in terms of

ater storage are obtained from the same procedure used to process

RACE L2 data, i.e., implemented here following Wahr et al. (1998) ,

haki et al. (2018d) . 
.3. El niño southern oscillation (ENSO) index 

The El Niño Southern Oscillation (ENSO, Barnston and

ivezey, 1987 ) is a large-scale inter-annual climate variability

henomenon in the Tropical Pacific Ocean, which affects the cli-

ate of many regions of the Earth due to its ability to change the

lobal atmospheric circulation, which influences temperature and

recipitation across the globe ( Trenberth, 1990; Forootan et al.,

016 ). The positive phase on ENSO is known as El Niño, and its

pposite phase is known as La Nina. The ENSO index used in this

tudy is derived from sea surface temperature in the Niño 3.4 region

5 ◦𝑁 − 5 ◦𝑆, 170 ◦𝐸 − 120 ◦𝑊 ) . Monthly ENSO index (Niño 3.4 index),

hich is provided by the NOAA National Center for Environmen-

al Information (NCEI) covering 1948 onward, is downloaded from

ttps://www.esrl.noaa.gov/psd/data/correlation/nina34.data . This ind

x will be used later in this study to demonstrate whether the DMDA-

erived surface and sub-surface water storage estimates are closer to

he reality than those from individual models. 

.4. Satellite altimetry of major lakes 

Water level measurement by satellite altimetry has been developed

nd optimised for open oceans, yet improved post-processing techniques

an be used to obtain reliable satellite altimetry-derived height measure-

ents within inland water bodies such as lakes, rivers, floodplains and

etlands (e.g., Moore and Williams, 2014; Uebbing et al., 2015 ). In this

tudy, satellite altimetry-derived surface water observations are used to

alidate TWS changes of GRACE and models as well as surface water de-

ived from GHMs and the DMDA method. Satellite altimetry time series

f major global lakes are available from the U.S. Department of Agricul-

ure (USDA) ( https://ipad.fas.usda.gov/ ). Repeated observations of the

OPEX/Poseidon (T/P), Jason-1, and Jason2/OSTM altimetry missions

re included in this database. USDA provides time series of lake water

evel variations from 1992 to the present-day within 81 lakes, and from

008 to present-day within more than 280 lakes around the world. An

ssessment over 14 lakes located within 8 river basins of this study is

resented in Section 4.4 for the period of 2002–2012. Details of these

akes are reported in Table 2 . 

. Dynamic model data averaging (DMDA) method 

In this section, we present the mathematical formulation of Dynamic

odel Data Averaging (DMDA), which follows the method of Dynamic

odel Averaging (DMA, Raftery et al., 2010 ) but with some modifica-

ions to achieve a recursive update of hydrological model outputs us-

ng GRACE TWS data ( Fig. 1 summarises the DMDA method). It will

lso be shown that the implementation of DMDA combines the bene-

ts of state-space merging techniques, such as Kalman Filtering (KF,

vensen, 1994 ) or Particle Filtering (PF, Gordon et al., 1993 ), Markov

hain (MC, ( Metropolis et al., 1953; Chan and Geyer, 1994; Kuczera and

arent, 1998 )), and Bayesian Model Averaging (BMA, Hsu et al., 2009 ).

MDA can be applied in data assimilation applications that work with

http://earth2observe.github.io/water-resource-reanalysis-v1
https://www.esrl.noaa.gov/psd/data/correlation/nina34.data
https://ipad.fas.usda.gov/
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Table 2 

An overview of satellite altimetry observation used to validate DMDA results. 

Lake River Basin Lake mid point Latitude range of pass Satellite pass Cycle 

Nasser Nile 23.31°N [22.91°N 23.66°N] 94 48 

32.83°E 

Tana Nile 12.11°N [11.95°N 12.19°N] 94 38 

37.40°E 

chad Niger 13.01°N [12.94°N 13.05°N] 248 25 

14.38°E 

Kainiji Niger 10.49°N [10.40°N 10.50°N] 135 21 

4.50°E 

Malawi Zambezi 10.84°S [12.042°S 9.70°S] 44 4 

34.40°E 

Tanganyika Zambezi 6.41°S [8.44°S 4.461°S] 222 11 

29.23°E 

Guri Orinoco 7.37°N [7.06°N 7.67°N 152 69 

117.12°W 

Winnipeg Nelson 53.18°N [52.82°N 53.55°N] 195 9 

98.21°W 

Winnipegosis Nelson 51.91°N [51.85°N 52.05°N] 195 17 

100.01°W 

Erie St. Lawrence 42.11°N [41.60°N 42.54°N] 193 45 

81.48°W 

Ontario St. Lawrence 43.56°N [43.35°N 43.83°N] 15 36 

77.47°W 

Tharthar Euphrates 33.87°N [33.75°N 34.00°N] 133 70 

43.37°E 

Urmia Euphrates 37.25°N [37.25°N 37.31°N] 133 4 

45.45°E 

Chany Ob 54.96°N [54.94°N 55.02°N] 5 28 

77.33°E 
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nly one model, e.g., ( Girotto et al., 2016; Khaki et al., 2017c; 2017b;

chumacher et al., 2018 ), as well as in handling multi-model outputs as

n Van Dijk et al. (2014) . 

DMDA is formulated based on the representation of a state-space

quation, which dynamically relates the GRACE TWS estimates and hy-

rological model outputs as: 

 𝑡 = 𝑧 𝑡 𝜃𝑡 + 𝜖𝑡 , (1)

𝑡 = 𝜃𝑡 −1 + 𝛿𝑡 , (2)

Eq. (1) is known as ‘observation equation’ and represents a linear

egression between the observation y t (GRACE TWS estimates) and the

ector of predictors z t (model-derived water storage simulations). The

nknown regression parameter 𝜃t , commonly known as the ‘state vec-

or’ ( Bernstein, 2005 ), is allowed to evolve in time, according to Eq. (2) ,

nd is known as the ‘state equation’. In Eqs. (1) and (2) , 𝜖t and 𝛿t can

e interpreted as the residual of output vector and state parameters, re-

pectively. They are usually defined using a normal distribution with the

ean value of zero and a standard deviation, which will be computed

uring the DMDA procedure. 

It is worth mentioning here that the EnKF ( Evensen, 1994 ) and PF

re among popular algorithms that can be used to recursively update

n estimate of the model states and produce corresponding innovation

alues given a sequence of observations in the state-space equation (sim-

lar to what introduced above). In theory, EnKF accomplishes this goal

y linear projections, and the estimations in PF are performed through a

equential Monte Carlo sampling. Comparing EnKF and PF, the latter in-

ludes a random element so it converges to the true posterior probability

unction if the number of samples is very large. While the strength of PF

s in its ability to account for both Gaussian and non-Gaussian error dis-

ributions, it suffers from the curse of dimensionality, which means that

he sample size increases exponentially with the dimension of the state-

pace in order to achieve a certain performance. This fact precludes the

se of PF in high-dimensional data-model fusion problems ( Bengtsson

t al., 2008; Daum and Huang, 2003; Snyder et al., 2008 ). For linear

nd Gaussian-type state-space models, as presented in this study, the

F method will yield the same likelihood as EnKF when the number

f simulations is large enough (this has been tested but the results are
ot shown to keep the focus of this study on presenting the DMDA).

herefore, the DMDA, which combines the benefits of the EnKF and it

s mathematically rigorous like PF, is adopted for the global data-model

ntegration of this study. 

Eqs. (1) and (2) are formulated with the main assumption that there

s little physical knowledge about how the defined regression model and

ts parameters are likely to evolve in time. However, we will show that,

y introducing two parameters of 𝜆 and 𝛼, which are referred to as ‘for-

etting factors’, one can control the temporal dependency of the DMDA

olutions. These two parameters provide the opportunity to treat model

imulations and observations of each step temporally dependent on, or

ndependent from, previous steps. Since changes in water storage de-

end on the history of hydrological processes, accounting for temporal

ependency between water states sounds logical. 

.1. Formulating DMDA to -update multi-model outputs using GRACE TWS

Here the DMDA method is formulated to update the outputs of multi-

ydrological models, M k , (for six models: 𝑘 = 1 , … , 6 ). It is worth men-

ioning that since available models have different storage definitions,

he length of the state vector can change from one model to another.

dditionally, the structure of each individual storage components can

lso be defined differently in different models (e.g., the number of soil

ayers does not remain constant in different hydrological models). These

ifferences can be handled by DMDA. 

In the following, 𝑌 𝑡 = [ 𝑦 1 , … , 𝑦 𝑡 ] represents the vector of observations

i.e., GRACE TWS estimates in our study) up to the time step t . To use

his vector to update the water storage simulation of a single-model, one

an estimate the unknown (linear) regression parameters ( 𝜃t ) as 

𝑡 −1 |𝑌 𝑡 −1 ∼ 𝑁( ̂𝜃𝑡 −1 , ̂Σ𝑡 −1 ) . (3)

The distribution of each parameter can be assumed to be normal with

nknown mean 𝜃̂𝑡 −1 and the variance Σ̂𝑡 −1 . The regression coefficients at

ime t ( 𝜃t ) can then be obtained using 𝜃𝑡 −1 from Eq. (3) and by introduc-

ng 𝛿𝑡 ∼  (0 , 𝑊 𝑡 ) to the state equation ( Eq. (2) ). Therefore, the desired

arameters at time t are defined by 

|𝑌 ∼ 𝑁( ̂𝜃 , 𝑅 ) , (4)
𝑡 𝑡 −1 𝑡 −1 𝑡 
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Fig. 1. Flowchart of the Dynamic Model Data Averaging (DMDA) method. The framework can accept an arbitrary number of models and it can be extended to accept 

various type of observations. 
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here 

 𝑡 = Σ̂𝑡 −1 + 𝑊 𝑡 . (5)

In Eq. (5) , W t is the covariance matrix of the state innovation vector

 𝛿t in Eq. (2) ) and it shows the dependency of the regression parame-

ers at each time point to the previous time. However, in practice, there

s no information about the temporal relationship between GRACE TWS

stimates and hydrological model outputs to be used to define W t . There-

ore, to mathematically define a temporal dependency, R t in Eq. (4) can

e replaced by 

 𝑡 = 𝜆−1 Σ̂𝑡 −1 , (6)

here 𝜆 (0 < 𝜆 ≤ 1) controls the influence of previous observations on

he regression value at time t , and is known as ‘forgetting factor’ in the

MDA method (see, e.g., Fagin, 1964; Jazwinski, 2007 ). 

Hannan et al. (1989) indicated that in the recursive estimation of

uto-regressive models, the covariance of previous steps is derived as a

eighted product of the current step (i.e., weighted by 𝜆−1 in Eq. (6) ).

y this assumption, the effective window size of temporal dependency

s estimated by 1∕(1 − 𝜆) . In our case, we choose 𝜆 to be 0.95, which

eans that for monthly data, the effective window size is equivalent to

8 months. This value is chosen experimentally because it minimized

he Root Mean Square (RMS) of differences between TWS derived from

MDA and GRACE. 
To apply DMDA and update water storage simulated by K different

odels, the parameter prediction of Eq. (4) is extended as 

( 𝑘 ) 
𝑡 

|𝑀 𝑡 = 𝑘, 𝑌 𝑡 −1 ∼ 𝑁 

(
𝜃̂
( 𝑘 ) 
𝑡 −1 , 𝜆

−1 Σ̂( 𝑘 ) 
𝑡 −1 

)
, 𝑘 = 1 , … , 𝐾, (7)

here 𝑀 𝑡 = 𝑘 denotes which model (from the 𝑘 = 1 , 2 , … , 𝐾 available

odels) applies at time t , and the solution 𝜃
( 𝑘 ) 
𝑡 

and Σ̂( 𝑘 ) 
𝑡 −1 can be obtained

sing a Kalman Filter (KF)-type update conditional on 𝑀 𝑡 = 𝑘 for each

ample. This (KF-type) update at time t is derived as 

( 𝑘 ) 
𝑡 

|𝑌 𝑡 ∼ 𝑁 

(
𝜃̂
( 𝑘 ) 
𝑡 

, Σ̂𝑡 

( 𝑘 ) )
. (8)

egression parameters to update multi-model storage simulations can

e estimated as 

̂( 𝑘 ) 
𝑡 

= 𝜃̂
( 𝑘 ) 
𝑡 −1 + 𝑅 

( 𝑘 ) 
𝑡 
𝑧 
( 𝑘 ) 
𝑡 

(
𝑉 𝑡 + 𝑧 

( 𝑘 ) 
𝑡 

(
𝑅 

( 𝑘 ) 
𝑡 

+ 𝑄 

( 𝑘 ) 
𝑡 

)
𝑧 
( 𝑘 ) 𝑇 
𝑡 

)𝑇 (
𝑦 
( 𝑘 ) 
𝑡 

− 𝑧 
( 𝑘 ) 
𝑡 
𝜃̂
( 𝑘 ) 
𝑡 −1 

)
, (9)

here V t is the covariance matrix of GRACE TWS estimates (our obser-

ation), and Q t is the covariance matrix of predictor z t (see Eq. (1) ).

n this study, the leakage errors of model-derived TWS are estimated

or the world’s 33 river basins (similar to those of GRACE). These er-

ors are used to generate Q t , which is therefore a diagonal matrix in the

MDA implementation of this study. For a grid based implementation

f DMDA, one can use the full covariance matrix of GRACE TWS similar

o Schumacher et al. (2016) . The covariance matrix Σ̂𝑡 in Eq. (8) can be

stimated from 

̂
𝑡 

( 𝑘 ) = 𝑅 

( 𝑘 ) 
𝑡 

− 𝑅 

( 𝑘 ) 
𝑡 
𝑧 
( 𝑘 ) 𝑇 
𝑡 

(
𝑉 𝑡 + 𝑧 

( 𝑘 ) 
𝑡 

(
𝑅 

( 𝑘 ) 
𝑡 

+ 𝑄 

( 𝑘 ) 
𝑡 

)
𝑧 
( 𝑘 ) 𝑇 
𝑡 

)−1 
𝑧 
( 𝑘 ) 
𝑡 
𝑅 

( 𝑘 ) 
𝑡 
. (10)
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It is evident from Eqs. (9) and (10) that the estimation of regression

arameter 𝜃̂𝑡 is conditional on a particular model. Therefore, the DMDA

olution to obtain unconditional results and update multi-model simula-

ions involves calculating the posterior model probability 𝑃 ( 𝑀 𝑡 = 𝑘 |𝑌 𝑡 )
s a weight for each model, which changes at each time step. In the

ollowing, we show that time-variable weights need to be computed for

ach model k by choosing a forgetting factor 𝛼 in a recursive method,

here 𝑘 = 1 , … , 𝐾. These weights are then used to average the models,

hich leads to the best fit to the GRACE TWS estimates. This justifies the

erm ‘Dynamic’ in the DMDA and makes the method different from other

veraging techniques such as the Bayesian Model Averaging (BMA). 

Let us assume that 𝑃 ( 𝑀 𝑡 = 𝑘 |𝑌 𝑡 ) = 𝜋𝑡 |𝑡,𝑘 , then the posterior model

robability for each model k at time t can be estimated as 

𝑡 |𝑡,𝑘 = 

𝜋𝑡 |𝑡 −1 ,𝑘 𝑃 ( 𝑦 𝑡 |𝑀 𝑡 = 𝑘, 𝑌 𝑡 −1 ) ∑𝐾 

𝑙=1 𝜋𝑡 |𝑡 −1 ,𝑙 𝑃 ( 𝑦 𝑡 |𝑀 𝑡 = 𝑙, 𝑌 𝑡 −1 ) 
, (11)

here, 𝑃 ( 𝑦 𝑡 |𝑀 𝑡 = 𝑘, 𝑌 𝑡 −1 ) is the density of the observation at time t , con-

itional on model k , as well as 𝑌 𝑡 −1 = [ 𝑦 1 , 𝑦 2 , … , 𝑦 𝑡 −1 ] , which is estimated

y a normal distribution as 

 𝑡 |𝑀 𝑡 = 𝑘, 𝑌 𝑡 −1 ∼ 𝑁 

(
𝑧 
( 𝑘 ) 
𝑡 
𝜃̂
( 𝑘 ) 
𝑡 −1 , 𝑉 𝑡 + 𝑧 

( 𝑘 ) 
𝑡 

(
𝑅 

( 𝑘 ) 
𝑡 

+ 𝑄 

( 𝑘 ) 
𝑡 

)
𝑧 
( 𝑘 ) 𝑇 
𝑡 

)
, (12)

nd, 𝜋𝑡 |𝑡 −1 ,𝑘 is the model prediction equation, which is defined by 

𝑡 |𝑡 −1 ,𝑘 = Σ𝐾 
𝑙=1 𝜋𝑡 −1 |𝑡 −1 ,𝑘 𝑎 𝑘𝑙 . (13)

In Eq. (12) , 𝜃̂
( 𝑘 ) 
𝑡 −1 is estimated using the KF-type update as formulated

n Eqs. (9) and (10) , while 𝑅 

( 𝑘 ) 
𝑡 

is obtained from Eq. (6) by choosing a

orgetting factor 𝜆, i.e., between 0 and 1. 

In Eq. (13) 𝑎 𝑘𝑙 = 𝑃 ( 𝑀 𝑡 = 𝑙|𝑀 𝑡 −1 = 𝑘 ) is the element of the K × K

ransition matrix A ( a kl ) between models, which can be onerous when

he number of models is large, e.g., for K models and 𝜏 time steps,

he number of combinations of models will be K 

2 𝜏 . In our study, we

ave 6 hydrological models, and 122 time steps over the entire period

f the study (2002–2012), which leads to 6 244 combinations of mod-

ls. To specify the transition matrix A , one way is to use the Markov

hain Monte Carlo method (MCMC, Geyer, 2011 ), which will typically

e computationally expensive. Therefore, in this study, we avoid the im-

licit specification of the transition matrix using the forgetting factor of

 < 𝛼 < 1, which has the same role as 𝜆 in Eq. (6) . As a result, the model

rediction Eq. (13) can be rewritten as 

𝑡 |𝑡 −1 ,𝑘 = 

𝜋𝛼
𝑡 −1 |𝑡 −1 ,𝑘 ∑𝐾 

𝑙=1 𝜋
𝛼
𝑡 −1 |𝑡 −1 ,𝑙 

. (14)

The posterior model probability, or weights, for each model at time

 is estimated in a recursive solution between Eqs. (11) , (12) , and

14) . This process is initialized by setting 𝜋0 |0 ,𝑘 = 

1 
𝐾 

for 𝑘 = 1 , … , 𝐾,

nd assigning a prior values to the initial condition of the states 𝜃
( 𝑘 ) 
0 ∼

(0 , Σ( 𝑘 ) 
0 ) and Σ( 𝑘 ) 

0 = Variance ( 𝑦 ( 𝑘 ) 
𝑡 
)∕ Variance ( 𝑧 ( 𝑘 ) 

𝑡 
) . The reason of choos-

ng this prior value is that in a linear regression, a regression coefficient

or a predictor z t is likely to be less than the standard deviation of the

bservations y t divided by the standard deviation of predictors z t (for

ore information see e.g., Raftery, 1993 ). In our numerical evaluation

f DMDA with six hydrological models, the optimum regression esti-

ates are found when 0.85 < 𝛼 < 0.9, because the RMS of differences

etween the DMDA-derived TWS and those of GRACE were at a mini-

um here. By choosing a forgetting factor 𝛼 = 0 . 9 , we assume a tempo-

al smoothing window with 36 month time steps between 6 hydrological

odel ensembles to predict posterior probability values of each model k

t time t . It means that the contribution of hydrological models at time

 − 37 in to the posterior model probability of each model k at time t is

egligible. The length of this smoothing window is reduced e.g., to 8

onths if we choose 𝛼 = 0 . 2 . 
The multi-model predictions of y t is a weighted average of model

pecific prediction 𝑦̂ 𝑡 , using the posterior model probabilities, 𝜋𝑡 |𝑡,𝑘 =
 𝑟 ( 𝑀 𝑡 = 𝑘 |𝑌 𝑡 ) , as its weights, i.e., 

̂ 𝐷𝑀𝐷𝐴 
𝑡 

= 

𝐾 ∑
𝑙=1 

𝜋𝑡 |𝑡,𝑙 ̂𝑦 ( 𝑙) 𝑡 
, (15) 

here 𝑦̂ 
( 𝑘 ) 
𝑡 

= 𝑧 
( 𝑘 ) 
𝑡 
𝜃̂
( 𝑘 ) 
𝑡 

. 

The posterior model probability for each model at time t , along with

he estimated time-variable regression parameter 𝜃
( 𝑘 ) 
𝑡 

from KF-type up-

ating Eq. (9) are used to estimate the multi-model prediction of water

torage components as 

̂ 𝐷𝑀𝐷𝐴 
𝑗,𝑡 

= 

𝐾 ∑
𝑙=1 

𝜋𝑡 |𝑡,𝑙 𝑧 ( 𝑙) 𝑗,𝑡 
𝜃̂
( 𝑙) 
𝑗,𝑡 
, (16)

here j represents each of the water storage components, i.e. groundwa-

er, soil moisture, surface water, canopy, and snow. To update the water

torage simulations of a single-model using the GRACE TWS estimates

nd the DMDA approach, K needs to be set to 1, and the prediction step

s limited to the conditional estimation of the parameter 𝜃
( 𝑘 ) 
𝑡 

|𝑀 

( 𝑘 ) 
𝑡 

using

q. (9) . 

The posterior model probability can also be used to estimate

nconditional probability distribution of regression parameters Θ𝑡 =
 𝜃
(1) 
𝑡 
, … , 𝜃

( 𝐾) 
𝑡 

) given by observation Y t following 

 (Θ𝑡 |𝑌 𝑡 ) = 

𝐾 ∑
𝑙=1 

𝑝 

(
𝜃
( 𝑙) 
𝑡 
|𝑀 𝑡 = 𝑘, 𝑌 𝑡 

)
𝑃 ( 𝑀 𝑡 = 𝑘 |𝑌 𝑡 ) , (17)

here 𝑝 ( 𝜃( 𝑘 ) 
𝑡 

|𝑀 

( 𝑘 ) 
𝑡 

, 𝑌 𝑡 ) shows the conditional distribution of 𝜃
( 𝑘 ) 
𝑡 

which is

pproximated by a normal distribution as: 

( 𝑘 ) 
𝑡 

|𝑀 

( 𝑘 ) 
𝑡 

, 𝑌 𝑡 ∼ 𝑁 

(
𝜃̂
( 𝑘 ) 
𝑡 

, ̂Σ( 𝑘 ) 
𝑡 

)
. (18)

The DMDA approach can be recovered to a standard Bayesian Model

veraging (BMA, Hoeting et al. (1999) ) when 𝛼 = 𝜆 = 1 . Then the pos-

erior model probability of model k is given by 

 ( 𝑀 𝑡 = 𝑘 |𝑌 𝑡 ) = 

𝑝 ( 𝑌 𝑡 |𝑀 𝑡 = 𝑘 ) ∑𝐾 

𝑙=1 𝑝 ( 𝑌 𝑡 |𝑀 𝑡 = 𝑙) 
, (19)

here 𝑝 ( 𝑌 𝑡 |𝑀 𝑡 = 𝑘 ) is the marginal likelihood, obtained by integrat-

ng the product of the likelihood, 𝑃 ( 𝑌 𝑡 |𝜃( 𝑘 ) , 𝑀 𝑡 = 𝑘 ) , and the prior,

 ( 𝜃( 𝑘 ) |𝑀 𝑡 = 𝑘 ) , over the parameter space (see also Hsu et al., 2009 ).

ig. 1 summarises the work-flow of the DMDA approach. 

. Results 

.1. Setup a simulation to test the performance of DMDA 

Before applying the DMDA method on real data, its performance

s tested in a controlled synthetic simulation, where the results of the

ayesian update are known by definition. In the first step of our sim-

lation, we aim to compare DMDA and BMA in terms of updating hy-

rological model outputs with respect to the observations (i.e., GRACE

WS estimates in this study). In the second step, it will be shown that

he DMDA-derived time-variable weights are the same as the expected

alues. 

To make the synthetic study simple, we assumed that TWS is de-

ned as the summation of just groundwater and soil moisture compo-

ents. By this definition, the time series of groundwater and soil mois-

ure of two hydrological models, i.e., here selected as LISFLOOD ( M 1 )

nd SURFEX-TRIP ( M 2 ), are introduced as predictors to the DMDA, and

WS derived from a third model, here selected to be PCR-GLOBWB,

s considered as the observation (here standing in for GRACE derived

WS). By this choice, after applying DMDA to merge M 1 and M 2 with

imulated observed TWS, we expect that the updated (DMDA-derived)

roundwater and soil moisture storage estimates will be fitted to those of

imulated observation. Here, we selected results within the Niger River

asin (id:20 in Fig. ESM.1), covering the period of 2002–2012. Fig. 2 (A)

hows the PCR-GLOBWB TWS as our observation, Fig. 2 (B) represents
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Fig. 2. A synthetic example, where DMDA is applied in a controlled set up, to integrate 2 hydrological models (here selected as SURFEX-TRIP and LISFLOOD) with 

simulated observed TWS to separate its compartments (i.e., groundwater and soil moisture). All data sets in this simulation is related to the Niger River Basin and 

covering the period between 2002–2012; Fig. 2 (A) shows TWS simulated from PCR-GLOBWB (here standing in for observed TWS); Fig. 2 (B) shows the time series 

of groundwater and soil moisture derived from model 1 (B1, B3) and model 2 (B2, B4), which are considered as the input predictors in DMDA; Fig. 2 (C1) presents 

the time varying weights estimated for two selected model,and Fig. 2 (C2) shows the reconstructed of weights in the second step of our simulation. Fig. 2 (D1) and 

(D2) show the updated hydrological components obtained from the DMDA and BMA method and comparison between the obtained results and the expected values 

derived form simulated observation data. 
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B  
he time series of groundwater and soil moisture derived from M 1 (B1,

3, blue curves) and M 2 (B2, B4, green curves), while the expected value

f DMDA-derived groundwater and soil moisture (simulated observa-

ion) are shown with the red color curves in these figures. 

The magnitude of minimum (Min), maximum (Max) and the Root

ean Square (RMS) of the signal for all simulated data sets can be found

n Table 3 . The uncertainty of these data sets are computed following a

east squares error propagation, while considering the leakage error of

RACE TWS in the Niger River Basin. It is worth mentioning that the

nal results of the simulation do not depend on the selection of mod-

ls and the adopted simplification. The RMS of differences between the

imulated TWS and two selected models (reported in Table 3 ) indicates

hat M 2 (RMS of Δ𝑇𝑊 𝑆 = 14 . 1 mm) had a better agreement with the ob-
ervations compared to M 1 (RMS of Δ𝑇𝑊 𝑆 = 18 . 6 mm). Fig. 2 (C1) shows

he estimated weights for the first model ( W 1 , Mean = 0.47) and second

odel ( W 2 , Mean = 0.53) obtained using DMDA ( Eq. (11) ). These results

how that the model which had a better agreement with observations

ained higher weights. 

To compare DMDA and BMA methods to average hydrological com-

onents, we apply both of these methods on simulated data sets. The

nal results are shown in Fig. 2 (D1: groundwater) and (D2: soil mois-

ure). Groundwater, soil moisture, and consequently TWS derived from

MDA shows better agreement with the expected values in compari-

on to the BMA results. The RMS of errors for both methods are re-

orted in Table 3 , which indicates that although TWS derived from

MA follow the expected value (RMS of error = 8.4 mm), the obtained
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Fig. 3. Posterior model probabilities for the six initially considered models, over 10 selected river basins with the biggest RMSEs computed using GRACE and 

models-derived TWS. In the middle of Fig. 3 the most contributed models in the DMDA-derived TWS are shown over the world’s 33 largest river basins, covering the 

period of 2002–2012. 

Table 3 

Magnitude of simulated predictors, observations, and DMDA results in a controlled synthetic simula- 

tion. 

Hydrological Compartment Model name Min Max RMS 

[mm] [mm] [mm] 

Groundwater (First model) LISFLOOD − 10.5 16.1 7.9 

Groundwater (Second model) SURFEX-TRIP − 12.1 39.8 14.2 

Groundwater (Expected value of DMDA) PCR-GLOBWB − 39.5 70.4 24.2 

Groundwater (DMDA result) DMDA Output − 35.3 92.3 19.9 

Groundwater (BMA result) BMA Output − 46.0 130.2 43.8 

Soil Moisture (First model) LISFLOOD − 37.4 62.2 30.8 

Soil Moisture (Second model) SURFEX-TRIP − 45.7 79.9 41.5 

Soil Moisture (Expected value of DMDA) PCR-GLOBWB − 52.0 107.9 48.7 

Soil Moisture (DMDA result) DMDA Output − 58.5 113.8 51.2 

Soil Moisture (BMA result) BMA Output − 40.8 49.6 21.0 

TWS (First model) LISFLOOD − 46.8 75.5 37.2 

TWS (Second model) SURFEX-TRIP − 57.6 115.2 54.6 

TWS (Expected value of DMDA results) PCR-GLOBWB − 83.3 164.5 64.2 

TWS (DMDA result) DMDA Output − 77.8 153.8 63.2 

TWS (BMA result) BMA Output − 77.8 153.8 63.2 

| Δ| Groundwater |LISFLOOD − Expected value | 0 58.1 11.2 

| Δ| Groundwater |SURFEX − Expected value | 0 45.8 10.3 

| Δ| Groundwater |DMDA − Expected value | 0 31.2 5.3 

| Δ| Groundwater |BMA − Expected value | 0 87.6 20.4 

| Δ| Soil Moisture |LISFLOOD − Expected value | 0 46.8 9.6 

| Δ| Soil Moisture |SURFEX − Expected value | 0 29.3 5.7 

| Δ| Soil Moisture |DMDA − Expected value | 0 29.2 5.2 

| Δ| Soil Moisture |BMA − Expected value | 0 89.5 18.6 

| Δ| TWS |LISFLOOD − Expected value | 0 94.7 18.6 

| Δ| TWS |SURFEX − Expected value | 0 60.9 14.1 

| Δ| TWS |DMDA − Expected value | 0 24.2 6.2 

| Δ| TWS |BMA − Expected value | 0 31.4 8.4 
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Fig. 4. Long-term (2002–2012) linear trend in the DMDA-derived groundwater (a1), soil moisture (b1), and surface water (c1) components, expressed in mm/yr. 

The uncertainty of these fitted linear trends are shown in (a2), (b2), (c2) respectively. 
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ndividual components from this method are not close to the simulated

alues (RMS of errors of 20.4 mm and 18.6 mm are found for ground-

ater and soil moisture, respectively). A considerable decrease in the

ifferences between hydrological components and the expected values

f DMDA shows that the method is suitable to update multi-model water

torage estimates. Details of the numerical comparisons can be found in

able 3 . 

In the second step of our simulation, we use the weights of the first

tep ( W 1 , W 2 , Fig. 2 (C1)) plus a temporal white noise with standard de-

iation of 0.02 m (equal to the standard deviation of GRACE TWS error

ithin the Niger River Basin) to simulate GRACE like TWS estimates. Re-

onstructed weights after applying the DMDA for the second time, using

he new synthetic TWS observations, are shown in Fig. 2 (C2). The cor-

elation coefficient between W 1 and W 2 with their reconstructed values

s found to be 0.73 and the RMS of the reconstruction’s errors is found

o be 0.18. This indicates that the DMDA-derived weights are close to

eality and further motivates us to apply it on real data sets. 

.2. DMDA weights to compare global hydrological models 

TWS derived from DMDA is a weighted average of selected mod-

ls by estimating time varying weights based on the Bayes rule as in

q. (15) . Fig. 3 shows the estimated weights for ten basins with the

argest RMS of differences between TWS derived from individual mod-

ls and GRACE TWS. Time-variable weights derived from DMDA al-

ow us (1) to quantify the quality and compare individual water stor-

ge simulations derived from each global hydrological model against

RACE TWS for different periods of time, and (2) to separate GRACE
WS in a Bayesian framework, while considering different model struc-

ures and errors within and between model simulations and GRACE

ata. The average of weights during 2002–2012 is considered as the

asis to select the best model in DMDA results over 33 river basins

hich is shown in the middle of Fig. 3 . From our numerical results, PCR-

LOBWB is found to gain the largest weights during this period, thus,

t contributed the most in the DMDA-derived TWS in North Asia, Cen-

ral Africa, and North America. The weights computed for SURFEX-TRIP

re found to be larger than other models within the snow-dominated re-

ions, such as, the Yukon and Mackenzie in the north part of America

nd the Lena in the Northeast Asia. Our results confirm the investiga-

ions by Schellekens et al. (2017) , who compared the mentioned models

gainst the Interactive Multi-sensor snow and Ice Mapping System (IMS,

amsay, 1998 ). Apparently, multiple snow layers of SURFEX-TRIP helps

t to better simulate snow dynamics during the cold seasons. 

We also find that SURFEX-TRIP received the highest averaged

eights (compared to other models) within the Amazon and Brahma-

utra River Basins during 2002–2012. The explanation is that SURFEX-

RIP likely better accounts for (1) the snow coverage of the Brahmapu-

ra River Basin, (2) the considerable contribution of surface water stor-

ge components in the TWS changes within the Amazon River Basin,

nd (3) the overall dry period within both basins ( Chen et al., 2009;

handu et al., 2016 ), specially the extreme hydrological droughts of

005 and 2010 ( Forootan et al., 2019 ). In the Amazon River Basin,

e also find the highest performance for SURFEX-TRIP between 2009–

011. Chen et al. (2009) reported that in 2009 the Amazon River

asin experienced an extreme flood, which increased the magnitude

f inter-annual TWS in this basin. TWS changes within the Amazon
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Fig. 5. Correlation coefficients and their lags between the ENSO (-Niño 3.4 index) and groundwater estimates derived from the DMDA method and hydrological 

models used in this study for the period of 2002–2012. 
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re also closely connected to the ENSO events in the tropical Pacific

 Kousky et al., 1984; Ropelewski and Halpert, 1987 ). Later we will

how that surface water derived from SURFEX-TRIP shows the high-

st correlation with ENSO index in comparison with the other models

f this study. This could be another reason that we derive the highest

eights for SURFEX-TRIP between 2009–2011 within the Amazon River

asin. 
Our results ( Fig. 3 ) indicate that within the river basins with con-

iderable irrigation (such as the Indus, Euphrates, and Orange River

asins), the relatively highest weights are assigned to the LISFLOOD and

RCHIDEE, where both account for human water-use ( Schellekens et al.,

017 ). ORCHIDEE is also found to perform well within the Brahma-

utra, Ganges, and Murray River Basins, each of which experienced a

trong decline in rainfall over the entire period of our study (e.g., 9.0
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Table 4 

The amplitude of linear trend [mm/yr] and its uncertainty, fitted to the DMDA-derived groundwater, soil Moisture, 

and surface water, during 2002–2012. 

Basin DMDA Ground Water DMDA Soil Moisture DMDA Surface Water 

ID Name 

1 Amazon 0.17 ± 0.12 − 1.92 ± 0.09 1.43 ± 0.06 

2 Amur 0.46 ± 0.06 2.61 ± 0.09 0.25 ± 0.03 

3 Aral 0.02 ± 0.08 − 1.43 ± 0.22 0.21 ± 0.12 

4 Brahmaputra − 0.44 ± 0.16 − 7.00 ± 0.69 − 0.13 ± 0.21 

5 Caspian-Volga − 2.06 ± 0.15 − 2.98 ± 0.16 − 0.02 ± 0.07 

6 Colorado 0.80 ± 0.11 − 0.75 ± 0.09 0.82 ± 0.08 

7 Congo − 0.72 ± 0.08 0.59 ± 0.03 0.06 ± 0.06 

8 Danube − 0.47 ± 0.18 − 0.75 ± 0.21 − 0.08 ± 0.04 

9 Dnieper − 0.5 ± 0.29 − 2.27 ± 0.28 − 0.03 ± 0.18 

10 Euphrates − 5.36 ± 0.23 − 5.75 ± 0.39 − 2.09 ± 0.09 

11 Lake Eyre 0.55 ± 0.16 2.42 ± 0.19 0.77 ± 0.04 

12 Ganges − 14.77 ± 0.25 2.69 ± 0.40 0.29 ± 0.05 

13 Indus − 8.26 ± 0.16 1.10 ± 0.13 − 0.06 ± 0.07 

14 Lena 1.74 ± 0.11 1.94 ± 0.05 0.20 ± 0.08 

15 Mackenzie 0.51 ± 0.06 0.12 ± 0.05 − 0.05 ± 0.10 

16 Mekong 1.58 ± 0.43 − 0.79 ± 0.33 0.83 ± 0.17 

17 Mississippi 1.25 ± 0.09 1.36 ± 0.09 0.33 ± 0.02 

18 Murray 0.06 ± 0.06 6.66 ± 0.15 − 1.47 ± 0.04 

19 Nelson 0.70 ± 0.18 2.45 ± 0.15 0.11 ± 0.03 

20 Niger − 1.14 ± 0.15 0.75 ± 0.15 0.32 ± 0.05 

21 Nile 0.45 ± 0.06 0.77 ± 0.06 − 0.05 ± 0.02 

22 Ob − 1.42 ± 0.08 − 1.54 ± 0.06 0.05 ± 0.07 

23 Okavango 1.74 ± 1.31 3.92 ± 0.55 − 1.42 ± 0.37 

24 Orange 1.32 ± 0.05 1.28 ± 0.06 − 0.85 ± 0.05 

25 Orinoco 0.87 ± 0.11 3.45 ± 0.26 − 0.22 ± 0.19 

26 Parana 0.68 ± 0.08 0.03 ± 0.13 1.04 ± 0.04 

27 St. Lawrence 1.49 ± 0.18 1.07 ± 0.07 0.48 ± 0.05 

28 Tocantins 2.41 ± 0.47 2.37 ± 0.35 0.08 ± 0.21 

29 Yangtze 0.55 ± 0.23 − 0.30 ± 0.09 0.20 ± 0.02 

30 Yellow − 3.50 ± 0.14 − 0.27 ± 0.05 0.08 ± 0.21 

31 Yenisei − 0.26 ± 0.07 1.79 ± 0.06 0.75 ± 0.11 

32 Yukon − 4.73 ± 1.08 − 1.52 ± 0.20 − 1.11 ± 0.23 

33 Zambezi 1.19 ± 0.38 0.65 ± 0.31 0.35 ± 0.25 
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 4.0 mm/decade between 1994–2014 over Ganges and Brahmapu-

ra Khandu et al., 2016 ). Specifically, ORCHIDEE contains 14 soil layers

see Table 1 ) that help it to better resolve vertical water exchange within

he irrigated regions. In ESM-section 2, it is shown that GRACE TWS

hanges within the Murray River Basin are considerably influenced by

NSO events (see also Forootan et al., 2012; Forootan et al., 2016 ), and

he simulated outputs of ORCHIDEE reflects these changes better than

he other tested models justifying the higher weights that are assigned to

his model within the DMDA procedure. In ESM-section 5, we show that

fter applying the DMDA, model-derived TWS simulations are tuned to

RACE TWS. 

.3. DMDA-derived individual water storage estimates 

The estimated weights for the six models of Section 4.2 along with

he computed regression coefficients 𝜃̂𝑡 (see the flowchart of Fig. 1 ), are

sed to compute the DMDA-derived groundwater, soil moisture, and sur-

ace water. In order to interpret the monotonic changes of water storage

hanges within the river basins, a long-term linear trend is fitted to the

MDA results that are shown in Fig. 4 , and the numerical values are

eported in Table 4 . 

Fig. 4 (a1) and (a2) show the linear trend fitted to the DMDA-

erived groundwater and its uncertainty. The results indicate a de-

rease in groundwater in 42% of the assessed river basis (i.e., 14 of

3). The largest decreasing trends are found in basins with large-scale

rrigation such as the Ganges ( − 14.77 ± 0.25 mm/yr), Indus ( − 8.26

 0.16 mm/yr) and Euphrates ( − 5.36 ± 0.23 mm/yr). The results

onfirm the findings by Khandu et al. (2016) , Forootan et al. (2019) ,

nd Voss et al. (2013) , respectively. The strongest increasing trends in

roundwater are seen in the Tocantins basin (South America) at the rate

f 2.41 ± 0.47 mm/yr, the Okavango (South Africa) with a rate of 1.74
 1.31 mm/yr, and the Lena (Northeast Asia) with 1.74 ± 0.11 mm/yr.

owever, all of these trends are not statistically significant. The positive

rends in groundwater storage in these last two basins are associated

o the heavy rainfalls, seasonal floods and the geographical location of

he Okavango Delta ( McCarthy et al., 1998 ), and underground ice melt-

ng caused by global warming ( Dzhamalov et al., 2012 ), respectively.

omparisons between the DMDA-derived groundwater and those of hy-

rological models indicate that after merging GRACE TWS with output

rom multiple hydrological models, the linear trend has changed consid-

rably. This means that introducing GRACE data can successfully mod-

fy the anthropogenic effects, which are not well simulated by models

linear trends of the modelled groundwater are shown in ESM-section

). 

The linear trend fitted to the DMDA-derived soil moisture and its un-

ertainty are shown in Fig. 4 (b1) and (b2). We find strongest increasing

rends in soil moisture estimates within the Murray (Australia), Oka-

ango, and Orinoco (South America) River Basins with rates of 6.66

 0.15, 3.92 ± 0.55, and 3.45 ± 0.26 mm/yr respectively, and largest

ecreasing trends in the Brahmaputra and Euphrates with rates of − 7.00

 0.69 and − 5.75 ± 0.39 mm/yr. 

Fig. 4 (c1) and (c2) show the linear trends and their uncertainty fit-

ed to the surface water storage estimated through the DMDA method.

inear trends of surface water within the 28 out of the 33 river

asins are found to be statistically insignificant (values between -1 and

1 mm/yr). The strongest negative trends are found in the Euphrates,

urray, and Okavango River Basins with rates of − 2.09 ± 0.09, − 1.47

 0.04, and − 1.42 ± 0.37 mm/yr respectively. In contrast, the largest

ositive trends are found within the Amazon and Colorado, at the rate of

.43 ± 0.06 and 1.04 ± 0.04 mm/yr, respectively. The heavy flood dur-

ng the summer of 2008–2009 ( Marengo et al., 2011; Chen et al., 2010 ),

hich was considerably bigger than the temporal mean, likely caused
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Fig. 6. Correlation coefficients and their lags between the ENSO (-Niño 3.4 index) and soil moisture estimates derived from the DMDA method and hydrological 

models used in this study for the period of 2002–2012. 
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Fig. 7. Correlation coefficients and their lags between the ENSO (-Niño 3.4 index) and surface water estimates derived from the DMDA method and hydrological 

models used in this study for the period of 2002–2012. 
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a  
hese positive trend in the Amazon River Basin. Negative trends in all

hree water storage compartments of the Euphrates River Basin (ground-

ater − 5.36 ± 0.23 mm/yr, soil moisture − 5.75 ± 0.39 mm/yr, and

urface water − 2.09 ± 0.09 mm/yr) can be associated to both irrigation

nd long-term drought as shown by Forootan et al. (2017) . 

.3.1. Contribution of ENSO in DMDA-Derived water storage components 

To demonstrate that the DMDA-derived surface and sub-surface wa-

er storage estimates are closer to the reality than those from any in-

ividual model, we extract the dominant ENSO mode from the DMDA

stimates and compare them with climate indices (see e.g., Anyah et al.,

018 ) in terms of temporal correlation coefficients with the ENSO index

-Niño 3.4 index, Fig. 5–7 ). The reason for this comparison is that GRACE

aptures considerable variability due to the ENSO events ( Phillips et al.,

012; Forootan et al., 2018 ). Therefore, by merging multi-model out-

uts with GRACE data, their skill in representing water storage changes

ue to large-scale teleconnections would be improved. 

In order to extract the ENSO modes from the DMDA-derived water

torage estimates and the original outputs of the six models (PCRGLOB-

B, SURFEX-TRIP, LISFLOOD, HBV-SIMREG, W3RA, and ORCHIDEE)

rincipal Component Analysis (PCA, Lorenz, 1956 ) method is applied

fter removing the long-term linear trend and seasonality from hydro-

ogical components. More details about PCA results and extracting ENSO
odes from DMDA water storage components are reported in ESM-

ection 6. 

Fig. 5 shows temporal correlations between the ENSO mode of

roundwater (from DMDA and original models) and the ENSO index.

aximum and minimum correlation of 0.75 and 0.53 corresponding to

 maximum lag of up to 2 months are found globally between the DMDA

roundwater and the ENSO index, respectively. Smaller correlations are

ound between the original models and the ENSO index. Among these

odels, W3RA and HBV-SIMREG indicate stronger correlations ( ~ 0.6

nd ~ 0.4 respectively) with the ENSO index with a maximum lag of

 months. Other models such as LISFLOOD and SURFEX-TRIP indicate

otably different correlations (compared to HBV-SIMREG and W3RA as

ell as that of DMDA) with ENSO in various basins. We find small pos-

tive correlations with a maximum value of 0.3 between original PCR-

LOBWB’s groundwater and the ENSO index. Although the maximum

ag of 3 month is estimated in most of the 33 basins, a lag of 15 months

s estimated for the Nile, Okavango, and Zambezi (Africa), Colorado

nd Nelson (North America), Ob, Lena, and Yellow (Asia) River Basins,

hich are likely not realistic (see, e.g., Awange et al., 2014; Anyah et al.,

018 ). 

Similar assessments are performed between the soil moisture and

urface water storage changes with the ENSO index and the results

re shown in Figs. 6 and 7 . Correlation coefficients of up to 0.8 are
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Table 5 

Correlation between satellite altimetery observation and: I) TWS, II) Surface Water (SW) derived from GRACE, DMDA, and individual models, 

during 2002–2012. 

Basin Water storage Correlation between Altimetry Obs. and: 

GRACE DMDA PCR-GLOBWB SURFEX-TRIP LISFLOOD HBV-SIMREG W3RA ORCHIDEE 

Nile TWS 0.358 0.381 0.326 0.239 0.095 − 0.082 0.001 0.180 

(Nasser Lake) SW – 0.462 0.363 0.441 – – – − 0.046 

Nile TWS 0.682 0.718 0.602 0.569 0.517 0.302 0.231 0.635 

(Tana Lake) SW – 0.492 0.340 0.603 – – – 0.455 

St. Lawrence TWS 0.353 0.261 0.271 0.010 − 0.121 − 0.114 − 0.087 − 0.010 

(Erie Lake) SW – 0.432 0.483 0.126 – – – 0.227 

St. Lawrence TWS 0.410 0.364 0.353 0.110 − 0.063 − 0.064 − 0.023 0.037 

(Ontario Lake) SW – 0.582 0.572 0.273 – – – 0.239 

Euphrates TWS 0.698 0.569 0.225 0.021 0.103 − 0.057 0.043 0.182 

(Tharthar Lake) SW – 0.236 0.127 0.093 – – – − 0.282 

Euphrates TWS 0.737 0.628 0.223 0.080 0.148 0.021 0.095 0.185 

(Urmia Lake) SW – 0.172 0.170 0.131 – – – − 0.325 

Ob TWS 0.393 0.482 0.371 0.303 0.336 0.338 0.348 0.328 

(Chany Lake) SW – 0.296 0.278 0.177 – – – − 0.333 

Zambezi TWS 0.552 0.632 0.362 0.277 0.346 0.225 0.246 0.391 

(Malawi Lake) SW – 0.382 0.247 0.410 – – – 0.394 

Zambezi TWS 0.414 0.365 0.231 0.192 0.121 0.117 0.128 0.160 

(Tanganyika Lake) SW – 0.243 0.096 0.241 – – – − 0.093 

Niger TWS 0.576 0.558 0.436 0.318 0.308 0.065 0.188 0.519 

(Chad Lake) SW – 0.657 0.511 0.616 – – – 0.689 

Niger TWS 0.132 0.102 − 0.002 − 0.149 − 0.174 − 0.383 − 0.278 0.079 

(Kainiji Lake) SW – 0.282 0.126 0.200 – – – 0.214 

Orinoco TWS 0.585 0.539 0.332 0.427 0.431 0.321 0.301 0.434 

(Guri Lake) SW – 0.421 0.314 0.390 – – – 0.318 

Nelson TWS 0.285 0.270 0.139 − 0.185 − 0.444 − 0.440 − 0.389 − 0.279 

(Winnipeg Lake) SW – 0.104 − 0.290 0.072 – – – 0.012 

Nelson TWS 0.216 0.249 0.238 0.135 − 0.09 − 0.164 − 0.088 − 0.065 

(Winnipegosis Lake) SW – 0.098 − 0.321 − 0.015 – – – − 0.480 
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omputed from the DMDA estimates with a maximum lag of up to

 months. Among the six models, correlation in soil moisture of the

URFEX-TRIP and LISFLOOD models is found to be the highest, i.e.,

orrelations of 0.6 to 0.8 within the 33 river basins examined here.

CR-GLOBWB and W3RA show a correlation of ~ 0.5, while those

rom HBV-SIMREG and ORCHIDEE are different from our other esti-

ations, for example, less than 0.1 in the Niger and Nile River Basins,

nd greater than 0.75 in North Asia. Khaki et al. (2018b) indicate that

ver the Nile River Basin, all the three hydrological components, (i.e.,

roundwater, surface water, and soil moisture) are strongly influenced

y ENSO. Therefore, the obtained correlation of 0.1 in the Nile River

asin from HBV-SIMREG is likely not realistic. 

The DMDA-derived surface water storage is compared with those of

CR-GLOBWB, SURFEX-TRIP, and ORCHIDEE, which contain the sur-

ace water storage compartment. The correlation coefficients are found

o be generally smaller than those of soil moisture and groundwater

omponents (with a maximum of 0.5), which likely shows that the mod-

lling of surface water needs improvement because in reality surface

ater in lakes and rivers within regions like East Africa shows an imme-

iate response to ENSO (e.g., Becker et al., 2010; Khaki et al., 2018b ).

ig. 7 shows that the surface water storage output of SURFEX-TRIP had

he highest correlations with the ENSO index in all basins of America

values between 0.33 and 0.51) and Africa (values between 0.23 and

.48), while ORCHIDEE shows the highest correlations (values between

.32 and 0.58) in most parts of Asia. The correlations for PCR-GLOBWB

re found to be relatively smaller, i.e., between 0.1 and 0.2 with lags

f between 5–12 months. Comparisons between the DMDA and original

odel outputs indicate that combining models with GRACE data im-

rove the correlations with the ENSO index and the correlation lags are

onsiderably reduced globally. It is worth mentioning that the DMDA

esults that are presented here are derived by setting the 𝛼 value in

q. (14) to 0.9. This means that we assume a 36 month temporal corre-

ations between water storage simulations of the six models. This value
uarantee an extraction of the ENSO modes within two PCA modes after

erging GRACE and model outputs. 

.4. Evaluating the DMDA results with satellite altimetry observation 

To validate our results, TWS and surface water derived from DMDA

nd six hydrological models are compared with independent surface wa-

er observations from satellite altimetry. The results are shown for var-

ous regions with reliable satellite altimetry measurements such as the

ile, Niger, and Zambezi River Basins in Africa, Ob and Euphrates in

sia, St’ Lawrence and Nelson in North America, and Orinoco in South

frica. Here, we assessed 14 lakes located in the 8 mentioned river

asins. Comparisons are performed in terms of correlation coefficients

etween TWS and surface water estimates (within the river basins), and

ater mass variations within the lakes (i.e., lake level heights from satel-

ite altimetry data are converted to mass variations following Moore and

illiams (2014) ). The numerical results are summarized in Table 5 ,

hich indicates that after implementing the DMDA method, correlation

oefficients are increased in most of the lakes. High values are found

n the Nile River Basin, e.g., Tana Lake (0.718), Euphrates (Tharthar

ake, 0.569), and Niger (Chad Lake, 0.558), while low values are found

n the Kainiji Lake of the Niger River Basin (0.102) and Winnipego-

is of the Nelson River Basins (0.249). It should be noted here that al-

hough low correlations are found for some lakes, the values are in-

reased when compared with the original model simulations. More de-

ails can be found in ESM-section 7. 

. Summary and conclusion 

In this study, the method of Dynamic Model Data Averaging (DMDA)

s introduced, which can be used (1) to compare multi-model (indi-

idual) water storage simulations with GRACE-derived Terrestrial Wa-

er Storage (TWS) estimates; and (2) to separate GRACE TWS into



N. Mehrnegar, O. Jones and M.B. Singer et al. Advances in Water Resources 138 (2020) 103528 

h  

o  

t  

m  

o  

d

 

P  

h  

2  

t  

D  

t  

m  

T  

o  

a  

t  

n

 

m  

r  

c  

w  

a  

s  

g  

t  

w  

F  

d  

t  

a  

c  

h  

G  

e  

i  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u  

a  

m  

s  

p  

o  

w  

D  

o  

D  

c  

s  

e  

f  

t  

s

D

 

i  

t

S

 

t

C

 

i  

c  

e  

M  

S  

i

orological water storage compartments. DMDA combines the property

f Kalman Filter ( Eqs. (9) , (10) ) and a Bayesian weighting ( Eq. (11) )

o fit multi-model water storage changes to GRACE TWS estimates. The

ethod is flexible in accounting for errors in observations and a pri-

ri information ( Eqs. (9) and (10) ), and can deal with state vectors of

ifferent length. 

The benefit of the DMDA method over the commonly used PF or

S methods are twofold: 1) these methods might not be efficient for

igh-dimensional fusion tasks (e.g., Snyder et al., 2008; Van Leeuwen,

009 ) such as the global hydrological application presented here, but

he DMDA’s computational load is lower than these techniques; 2)

MDA provides time-variable weights that can be used to understand

he behavior of a priori information (here the output of hydrological

odels) against GRACE TWS estimates, while considering their errors.

he advantage of the DMDA over the Ensemble Kalman Filter-based

f techniques is that the posterior distributions are computed through

 Bayesian rule that result in more reliable estimations of states and

heir errors, while avoiding the high computational loads of the PF tech-

iques. 

A realistic synthetic example was defined to evaluate the perfor-

ance of DMDA ( Fig. 2 ), which showed that the method is able to cor-

ectly separate GRACE TWS estimates into its individual hydrological

omponents. We also showed that the DMDA’s estimation of temporal

eights (for each model) was close to the reality, and can be used to

ssess the performance of available models. Based on the real data, we

howed that the representation of linear trends and seasonality within

lobal hydrological models, as well as their water storage changes due to

he El Niño Southern Oscillation (ENSO) can be improved using DMDA,

hile considering the uncertainties of models and observations (see

ig. 1 ). Our results also showed that how the DMDA method is able to

eal with models with different structures, and how it updates their wa-

er storage simulations while considering their errors. Considering these

rguments, we believe that the new water storage estimates, i.e., models

ombined with GRACE, are of great values and can be used for further

ydrological and climate research investigations compared to model or

RACE only estimates. Therefore, the presented results can be consid-

red as one step forward to improve model deficiencies following the

nsights of Scanlon et al. (2018) . In what follows, the main conclusions

nd remarks of this study are summarized. 

• Estimated weights ( Fig. 3 ) showed that the PCR-GLOBWB model

gained the largest weights, thus, it contributed the most in the

DMDA-derived TWS in North Asia, North America, and the center

of Africa. SURFEX-TRIP performed best within basins with domi-

nant surface water storage changes, as well as in snow-dominant

regions. The LISFLOOD and ORCHIDEE models were found to

perform well within irrigated basins, and those affected by ENSO

events. 
• DMDA results in Fig. 4 (a1) showed that considerable trends exist

in groundwater storage changes within the Ganges, Indus, and

Euphrates basins during 2002–2012. These changes are domi-

nantly influenced by anthropogenic modifications. Trends in soil

moisture ( Fig. 4 (b1)) were found to be mostly related to meteo-

rological prolonged drought events such as those in the Brahma-

putra and Euphrates River Basins. 
• DMDA was able to modify the ENSO mode of water storage vari-

ability in most of the world’s 33 largest river basins (see Figs. 5 –

Fig. 7 ). DMDA assigned the biggest corrections of ENSO mode in

groundwater to the Nile, Murray, Tocantins, Ob, Okavango and

Orange River Basins. The highest corrections of the ENSO mode

in soil moisture were found for the Nile, Niger, Zambezi, and

Amur River Basins, and in surface water to Nile, Niger, Congo,

Tocantins, and Murray River Basin. For example, the correlation

coefficient between groundwater storage and ENSO in the Mur-

ray River Basin changed from − 0.2 to 0.6. For the Nile River
Basin, they changed from 0.1 to 0.4 for soil moisture, and from

0.3 to 0.7 for the surface water compartment. 
• Comparison between TWS and surface water derived from DMDA

with independent surface water observations from satellite al-

timetry (Fig. ESM.16 and dummyTXdummy-(Fig. ESM-section 7

in ESM-section 7) showed that, DMDA was able to correctly de-

tect the best performing model and maximize its contribution in

the dynamic averaging process which enhanced the reality of wa-

ter storage estimates. 
• To implement the DMDA in this study a forgetting factor of 0.95

was considered in Eq. (6) , which is equivalent to the temporal

dependency in estimating time variable regression parameters in

Eq. (2) . In Section 3 , it was shown that this selection is equiva-

lent to 18 months temporal dependency between GRACE TWS ob-

servations and model simulations. This value is selected because

the DMDA results were closest to that of GRACE. After selecting

this value, we also obtained a distinguishable ENSO mode from

the DMDA-derived TWS and individual water storage estimates.

Therefore, we conclude that this temporal lag might be consid-

ered in other works that attempt to apply sequential mergers or

smoothers to assimilate observed water storage data into models.
• In order to reduce the computational load of this work, instead

of implementing a Markov Chain Monte Carlo (MCMC) technique

to estimate the transition matrix between models in Eq. (13) , a

forgetting factor of 0.9 was considered in Eq. (14) . This might be

replaced with an efficient MCMC implementation in future. 

The DMDA method, introduced in this study, has the potential to be

sed in different climate and hydrological applications to compare avail-

ble models (which can be of various types of hydrological or climate

odels) against reliable observations. It can also be used to generate en-

embles from multi-model outputs such as climate projections. The ap-

lication of this study can also be extended by incorporating other types

f remote sensing observations such as satellite based soil moisture or

ater level data beside those of GRACE. A secondary application of the

MDA can also be devoted to its application for predicting (or extrap-

lating) water storage estimates. To achieve this purpose, however, the

MDA’s formulation needs to be extended. For example, one approach

an be to use the DMDA weights, which are computed for the period of

tudy, to identify best models in different river basins covering differ-

nt seasons. By analysing this information and knowing the TWS in the

uture, one can use a combination of different model runs (weighted by

he DMDA outputs) and extrapolate the surface and sub-surface water

torage estimates. 
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